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Abstract. Ambient occlusion is a popular lighting effect in modern ren-
dering engines. One of its implementations is Screen Space Ambient Oc-
clusion (SSAO), which is generally used in real-time applications. It is
a relatively cheap effect which can substantially improve the realism of
a scene. It also has its drawbacks, such that it is unable to take into
account the effect of invisible geometries and can produce unnatural ar-
tifacts. These could be solved by using ray tracing based techniques,
but previously they were too slow for real-time purposes. Now recent
advancements in this area made it possible to apply methods like these
without compromising performance by using hardware acceleration for
ray tracing. In this paper, we review the important aspects of hardware
accelerated ray tracing and ambient occlusion. We also propose an ex-
tension for the ray tracing based implementation that can capture thin
objects like drapes with a handful of samples.

1 Introduction

Ray tracing as a technique was first described in [1], but for real-time applications
like computer games, it could not be used effectively until recently. The hardware
was optimized for the rasterization based pipelines and could not handle a large
number of ray-triangle intersection calculations required to create high-quality
results. Still, ray tracing based algorithms were researched and developed too
because they were used for offline rendering purposes, like movies, where the
execution speed was less critical.

Compared to rasterization ray tracing provides many benefits. Common ef-
fects like reflections and shadows can be achieved naturally, with better quality
and fewer artifacts. With rasterization clever techniques and optimizations were
required to maintain real-time frame rates. In 2018 NVIDIA introduced a new
line of GPUs with hardware based ray tracing support. Using specialized RT
cores the GPU could process ray-triangle intersections much faster than before,
and so ray tracing became usable for computer games too. Many popular game
engines implemented hybrid renderers where rasterization based pipelines were
supplemented with ray tracing based effects to provide more realism. Until re-
cently, only owners of an NVIDIA RTX GPU could benefit from these, but in
2020 AMD also introduced new GPUs with support for ray tracing. The exten-
sions to use these new features were also standardized and added to the Vulkan
API, so developing for multiple platforms is much easier.

While fully replacing rasterization with ray tracing could become possible in
the future, for now it is only used for certain effects which are easier to compute
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and provide better realism. Dynamic ambient occlusion is one such technique.
In rasterization based pipelines screen space techniques were used, but they can
not take into account invisible parts of the scene. Now with ray tracing, these
effects can be further refined to create artifact free and immersive lighting.

In this paper, we make an overview of the ray tracing pipeline, its features
and how they can be used to implement ambient occlusion and an approximation
of global illumination.

Without ambient occlusion With ambient occlusion

Fig. 1. Results of applying ambient occlusion in the Sponza scene. By using a transfer
function color bleeding can be achieved, demonstrated with bluish tint on the wall
behind the curtain (top right).

2 Related work

Nearby occlusions, accessibility, or openness of points on a surface were first
examined with the objective of ambient lighting calculations in [2, 3], where
the obscurances method was introduced. The obscurances method, which is also
called the ambient occlusion [4, 5] computes just how “open” the scene is in
the neighborhood of a point and scales the ambient light accordingly. Obtaining
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their radiance, occluders can be treated as indirect light sources, so even color
bleeding effects can be simulated [6–9].

Until recently, a physically correct approach would be too expensive com-
putationally when dynamic scenes need to be rendered in real-time, therefore
the mentioned models simplify the problem. For a better approximation of the
ambient lighting, Bavoil et. al [10] proposed a hybrid technique to combine the
classic screen space approach with the new hardware accelerated ray tracing
to improve the robustness while maintaining a low sample count. Gautron et.
al [11] proposed a full ray tracing based technique where the sampling noise is
filtered in world space with various techniques to reach real-time frame rates
with complex scenes.

Another promising direction could be to use neural networks to predict the
ambient occlusion. Zhang et. al [12] recently proposed one such technique with
a detailed comparison to existing methods.

3 Overview of hardware accelerated ray tracing

Hardware accelerated ray tracing provides new possibilities for the developer,
who in turn can create a more impressive virtual world for the end-user. But to
achieve a pleasing result and to maintain acceptable frame rates, especially on
the lower end of the GPUs, we must have a good understanding of the underlying
implementation. Just as with other parts of the Vulkan API, we are presented
with multiple ways of doing the same thing. To make the right choice, we need
to know the advantages and the disadvantages, the intended use cases of the
different features. In following sections we will make an overview of how the
ray tracing API works, and highlight some of the more important choices, the
developer must make. We will use terminology based on the Vulkan API, but
both the OptiX and the Microsoft DXR API are very similar.

3.1 Acceleration structure

The most performance demanding part of ray tracing is to solve the visibility
problem. For every ray, we need to determine which triangle or object it in-
tersects. We need to create an acceleration structure so we can determine these
efficiently. However, we must also take into account that scenes in modern games
are highly dynamic. We will have to update it in some ways before rendering
every frame. The inner workings of this structure are managed by the imple-
mentations, but we are still left with a lot of flexibility to tune it for our own
usage.

For the developers, two parts of the acceleration structure are visible. The
bottom level acceleration structure (BLAS) and the top level acceleration struc-
ture (TLAS). A BLAS represents an object or a group of objects that are close
together, while the TLAS is a collection of BLAS-s. We can trace rays against
a TLAS, so in simple cases we can think about it as a representation of our
scene on the GPU. A BLAS can hold objects that are built up by triangles or
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objects that are represented by an axis-aligned bounding box. In the first case,
handling of the ray-triangle intersections is implemented by the hardware. In
the second case we must provide an intersection shader, which will be called by
the implementation when required. We will discuss this in detail later on. The
TLAS refers to already created BLAS-es. It can refer to the same BLAS multiple
times with different transformations (like instancing).

When building any one of the two types of the acceleration structure we can
decide if we would like to optimize it for fast ray tracing or for fast building. We
can also decide if we would like to update it on the fly (which will be potentially
faster) or just rebuild it from scratch. For example, an object without animations
should be built for fast ray tracing because its inner structure will not be modified
(transformations can be handled by the TLAS). On the other hand, an object
with animations is much more difficult to handle. The BLAS must be updated
every frame, for example using a compute shader to calculate the animated
positions of the vertices. But if the animation contains frames where there are
large differences in positions, then an updated structure will not be efficient for
ray queries. In this case, a rebuild can become necessary. It is also possible to
pre-build multiple acceleration structures for the same object in different poses
and update the one that is closest to the actual pose. These decisions should be
made on a case-by-case basis, and profiling should be used where it isn’t clear
which one is the better.

If possible, multiple objects should be grouped together inside a BLAS. It’s
a good idea to minimize the empty space inside its axis-aligned bounding box.
The frequency of updates should also be kept in mind. It would not be a good
idea to group static and animated objects together, just because they are close
to each other.

For the TLAS fast tracing should be preferred. It can also be fully rebuilt
every frame for dynamic scenes to not lose its efficiency. Culling can also be
applied to remove objects that are not interfering with the current view. Of
course, we have to keep in mind that invisible objects can still affect the scene,
for example, through shadows and reflections.

3.2 Shaders and pipeline

With rasterization, we are rendering one object at a time, and so we can bind
the actual shaders, uniform variables and vertex buffers one by one. (Of course,
grouping them together is a good idea.) On the other hand, with ray tracing, a
ray can intersect any object currently present in the scene, so every data must
be available on the GPU. This means all the textures, vertex buffers and also
the shaders used by the different materials. They must be linked to the objects,
encapsulated in BLAS-es and referred by the TLAS. To solve this problem,
multiple new concepts were introduced.

The first one we shall discuss is the hit group. It represents a collection of
shaders to call when a ray intersects an object. A hit group is directly linked to an
object inside a BLAS. It can contain multiple shaders with different purposes. If
the object is described by a bounding box, it must contain an intersection shader
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(otherwise, it must not). The implementation will call it when a ray intersects
the bounding box, and it must decide if a true intersection happened. It can
report multiple intersections as well. One usage could be to render an implicit
surface described by a mathematical function. The closest hit shader will be
called for the intersection that is closest to the origin of the ray. The any hit
shader will be called for all intersections (including the closest).

Ray queries can be started in the ray generation shader. When a ray tracing
operation is requested, a certain number of ray generation shader instances are
spawned (just like compute shaders). These can create a ray and query a TLAS
for intersections. A hit is determined as discussed above, and the relevant shaders
are executed. Data can be both sent from and returned to the ray generation
shader. If no intersections are found for a ray, then the active miss shader is
called. This can be selected when a ray query is started.

During execution, a closest or an any hit shader can create another ray query
recursively. Deep recursions should be avoided. One reason is that implementa-
tions are not required to support recursion at all. It should be replaced by cycles
in the ray generation shader. For example, the closest hit shader can return the
surface attributes, and based on this, the ray generation shader can create an-
other query to calculate reflections. Deep recursive pipelines can have an impact
on the performance, but one level deep recursion (shadow rays for example) is
acceptable.

The last type of shader usable with ray tracing is the callable shader. A
pipeline can contain multiple different callable shaders. They are identified by
an index and can be called from any shader stage. They are not needed to be
linked against the caller, and they can be selected based on dynamic values. For
example, to do the shading the closest hit shader could call a different callable
shader based on the type of the material.

The ray tracing pipeline is basically the collection of these shaders. What
left is how to decide which one to call. To solve this, we will need the so called
shader binding table. It is an array containing the handlers to all the shaders.
Identification is done by calculating the index of the correct handler. For the
ray generation shader, this must be done on the CPU side during command
recording. The miss shader is identified by its index during the creation of a
ray query. Above we already discussed the callable shader, so only the hit group
selection remains.

When a BLAS reference is added to the TLAS, besides the transformation
matrix, the base address for the hit groups can be selected too. As we discussed
earlier, the BLAS can contain multiple geometries and they can use different
shaders. The shader binding table must contain all hit groups for the geometries
in order, starting at the base offset given for the BLAS reference. When an
intersection is found the correct index will be computed by the GPU. Sometimes,
based on what is the purpose of the ray, certain optimizations can be done. For
example, occlusion queries could need less work than a reflection query. To do
this, multiple ray types can be specified and different shaders can be stored in
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the shader binding table. For each geometry the table should contain a handler,
one after the other for each type of ray.

4 Ambient occlusion

For the sake of simplicity, ambient occlusion or obscurances models assume that
the surfaces are diffuse and have albedo a(s) and consequently their BRDF is
fr(s) = a(s)/π. According to the rendering equation, the reflected radiance Lr

in shaded point s can be obtained as:

Lr(s) =

∫

Ω

Lin(s,ω)
a(s)

π
cos+ θdω, (1)

where Ω is the directional sphere, Lin(s,ω) is the incident radiance from di-
rection ω and θ is the angle between illumination direction ω and the surface
normal.

If no surface is seen from s at direction ω, then shaded point s is said to be
open in this direction, and incident radiance Lin is equal to ambient radiance
La. If there is an occluder nearby, then the point is called closed at this direction
and the incident radiance is the radiance of the occluder point o.

Note that this means that the radiance of arbitrary far occluder points may
have an effect on the shaded point. However, this does not meet our intuition and
everyday experience that the effect of very far surfaces becomes negligible. This
experience is due to that the real space is not empty but is filled by participating
media. If the extinction coefficient is σt and the albedo is 1 in the participating
media, then the radiance along a ray changes as:

Lin(s,ω) = exp (−σtd)L
r(o) + (1− exp (−σtd))L

a

where d is the distance between the shaded point and the occluder point. Note
that in this equation factor

µ(d) = (1− exp (−σtd)) (2)

and its complement 1 − µ(d) = exp (−σtd) express the effects of the ambient
lighting and of the occluder on the shaded point, respectively. The effect of the
occluder diminishes with the distance. Function µ can be interpreted as a fuzzy
measure that defines how strongly the given direction belongs to the set of open
directions based on distance d of the occlusion at this direction.

The exponential function derived from the physical analogy of participat-
ing media has a significant drawback [3]. As it is non-zero for arbitrarily large
distances, very distant surfaces need to be considered that otherwise have a
negligible effect. Thus, for practical fuzzy measures, we use functions that are
non-negative, monotonically increasing from zero and reach 1 at finite distance
R instead of only converging to 1 when the distance goes to infinity. This allows
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the consideration of only those occlusions that are nearby, i.e. in the neighbor-
hood sphere of radius R. The particular value of R can be set by the application
developer. When we increase this value, shadows due to ambient occlusions get
larger and softer.

To define the fuzzy measure that increases from zero to one in [0, R], we can
use a simple polynomial:

µ(d) =

(

d

R

)α

.

Using the fuzzy measure, the reflected radiance of the shaded point can be
expressed in the following way:

Lr(s) = a(s) (LaO(s) + I(s))

where O(s) is the ambient occlusion (obscurance) of the shaded point [2, 3]:

O(s) =
1

π

∫

Ω

µ(d) cos+ θdω, (3)

and I(s) is the irradiance due to nearby indirect lighting:

I(x) =
1

π

∫

Ω

(1− µ(d))Lr(o) cos+ θdω. (4)

This integral is traced back to the ambient occlusion. Replacing occluder
radiance Lr(o) by the average of surface radiance values in the neighborhood of
the shaded point L̃r(s), we can express the irradiance as:

I(s) ≈
1

π

∫

Ω

[1− µ(d)]L̃r(s) cos+ θdω = L̃r(s)(1−O(s)).

The original definition of ambient occlusion [4, 5, 13] can be interpreted as
the simplification of the obscurance when the fuzzy measure becomes a clear
separation of occlusion closer than R and no occlusion closer than R. On the
other hand, it was also proposed to approximate the solid angle and the average
direction where the neighborhood is open, thus we can use environment map illu-
mination instead of the ambient light. However, nowadays many authors include
a weighting function into the ambient occlusion formula, thus ambient occlusion
has become equivalent to the original obscurance model. As the term ambient
occlusion has got more popular than the older obscurance, we shall name the
general method as ambient occlusion.

The solution of equation 4 requires some estimation of the radiance Lr(o)
reflected off the occluding points, which is responsible for indirect lighting. The
first approach to extend the obscurances model with local indirect lighting was
the spectral obscurances method, which took average spectral reflectivities of the
neighborhood and the whole scene into account, thus even color bleeding effects
could be cheaply simulated [14]. Bunnel [15] extended ambient occlusion as well
to incorporate color bleeding.
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In our method we used the following formula of local indirect lighting (equa-
tion 4), which can be traced back to the computation of ambient occlusion.
Replacing the occluder radiance Lr(o) by average L̃r(o) of surface radiance val-
ues in the neighborhood of the shaded point, we can express the indirect lighting
as:

I(s) =
1

π

∫

Ω

(1− µ(d))Lr(o) cos+ θdω ≈ L̃r(s)(1−O(s)).

The average surface radiance can be obtained during tracing the occlusion ray.
If the closest hit point along the ray is closer than a predetermined limit the
diffuse component of the surface material is used as an approximation.

5 Implementation of ambient occlusion and indirect

lighting

The discussed algorithm is implemented as a two render pass. The first pass cal-
culates the direct lighting, the ambient occlusion factor and the ambient radiance
for every visible surface point. To maintain real-time performance we approxi-
mate the occlusion factor with a small number of occlusion rays. To generate the
directions of the occlusion rays we use an importance sampling-based approach.
As we cannot store a handful of sample directions for every surface point of the
scene we have to decide whether we use the same sample set for every point or
use some perturbation. The same samples would make the error correlated and
results in “stripes”, applying perturbation would cause dot noise. Unfortunately,
both of these types of noise are quite disturbing.

In order to reduce the error without taking an excessive number of samples,
we apply interleaved sampling [16]. Interleaved sampling takes advantage of the
estimates in neighboring pixels, as it uses different sets of samples of the pixels
of a 4 × 4 pixel pattern in the first pass. The errors in the pixels of a 4 × 4
pixel pattern are uncorrelated, which can be successfully reduced by a low-pass
filter of the same size in the second rendering pass. When implementing the low-
pass filter, we can also check whether the depth difference between the current
and neighboring pixels exceeds a given limit. If it does, we do not include the
neighboring pixels in the averaging operation.
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No interleaved sampling Interleaved sampling Geometry aware filter

Fig. 2. Without interleaved sampling visible artifacts can be seen on the resulting
image. By using different samples the noise becomes less prominent for the observer.
Finally the geometry aware low-pass filter substantially improves the results.

5.1 Improving sampling accuracy for thin objects

Even ray traced ambient occlusion can cause certain artifacts to appear. When a
thin object is near a surface, parallel to its normal, as seen on figure 3, very few,
possibly none of the sampled rays will hit the object. This results in an artifact,
similar to light bleeding in standard shadow mapping. Rays originating from
the neighboring surface points will have a much higher probability to detect the
occluding object. The resulting effect is the incorrect lightening of an inner area
directly under the object compared to the surrounding surface. This could also
happen with screen spaced techniques, where the limited nature of the available
data makes it very hard to remove the artifact.

With ray tracing we can try to detect these thin geometries with another
set of rays. We will use the ones used for the sampling of local ambient lighting,
which did not catch a geometry to generate this next batch of rays that will have
a high probability to find the potential thin occluder. We failed to detect the
object because it is near parallel to our first batch of rays and thin enough to
fit inside the volume between them. If it is truly an occluder, then it must have
a large enough volume alongside the direction of the rays. According to this, we
collect the ones that did not catch geometry and connect every endpoint to each
other with new sample rays. These will be able to hit the thin geometry through
its larger surface. The idea is demonstrated on figure 4.
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Fig. 3. The area directly under the curtain incorrectly receives more ambient light
than its surroundings.

Fig. 4. Schematic figure to demonstrate the idea of detecting thin objects. Rays orig-
inating from a point directly under the occluder (left) has less chance to detect it
compared to ones that are further away (right). However the rays shown in blue can
successfully catch the previously unseen geometry.

We take each new ray into account with a weight proportional to its length.
This corresponds to the size of the sampled volume. We take the minimum of
the resulting average and the result of the first batch of rays. This way, we fill
in the potential holes left by the standard method as seen on figure 5.
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Fig. 5. Demonstration of improvements over the standard technique (left) with the
additional rays (right). Also note that the side of the pillar, close to the curtain is
correctly darkened in the improved version.

6 Results

The quality of the results heavily depends on the rays used to sample ambi-
ent lighting. Increasing the number of rays obviously improves quality, given
the nature of the algorithm but requires more time to compute. By choosing
appropriate sample rays, providing a good coverage of the hemisphere over the
surface, using the above mentioned technique to detect thin occluders and using
interleaved sampling we can reduce the number of samples per pixel, substan-
tially improving performance. The quality of the ambient occlusion map becomes
worse but the final results are barely affected.
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4 spp 8 spp 16 spp 32 spp

Fig. 6. Demonstration of image quality given the number of sampels per pixel.

Based on our experiments real-time frame are rates achieved by using up to 8
samples and more than that does not visibly improve the image quality. Because
of the transfer function using only 4 samples, it results in visible noise. Our thin
object detection for 8 samples only increases frame time by about 2 ms on Full
HD image with 1920× 1080 pixels.
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