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Abstract. This paper deals with speed measurement from images of a
vehicle-mounted camera. The solution is obtained via transformed im-
ages by Inverse Perspective Mapping (IPM). In order to generate IPM
images, the non-perspective distortion of the camera should be recti-
fied. The calibration method of Scaramuzza et al. is applied here for this
purpose. From the IPM video, 2D velocity vectors are obtained by Lucas-
Kanade feature tracking and Gunnar-Farneback optical flow. The final
vehicle speed is robustly estimated from the speed vectors. The metric
speed vector of the vehicle can also be calculated due to the applied
markers in the calibration step.

1 Introduction

Recently, research on algorithms for autonomous systems has become one of the
most popular topics in computer vision. This paper deals with the processing of
videos coming from a vehicle-mounted cameras.

The aim of this paper is to measure the speed of the vehicle. This task is
called Visual Odometry (VO) in the literature [I2]. Thought there are more
effective sensors, that can be e.g. tachometer or GPS, to measure the speed,
video-based measurement is also interesting as it can be applied as part of a
visual system, thus, it is valuable for both research and educational purposes.

The proposed approach here is based on Inverse Perspective Mapping (IPM) [6].
IPM is a perspective transformation between the original and a hypothetical
image. IPM processes the frontal camera view as input, it applies the suitable
transformation, i.e. a homography, and produces a top-down view of the scene
by mapping the pixels to a different 2D-coordinate frame, which is also known
as Bird’s-Eye View (BEV).

IPM images/videos can be exploited very effectively within tasks such as lane
detection [II] road marking detection [I0], road topology retrieve [I], object
detection and tracking [I4] [3], as well as intersection prediction [9] or path
planning.

The main contribution of this paper is to develop a novel system in order to
implement visual odometry-based speed measurement. An SJCAM SJ4000 digi-
tal camera with high Field of View (FoV) is applied for the tests, its radiometric
calibration is also addressed here.
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The structure of the paper is as follows. The calibration of high FoV cameras
is discussed in Section [2] The theoretical and practical issues of IPM image
generation is overviewed in Section [3] Then our novel optical flow based speed
measurement is proposed in Section [4f The novel approach is tested on real
images sequences, it is discussed in Section [5} Finally, the work is concluded and
some possible research directions are proposed in Section [0]

2 Omnidirectional Camera Calibration

Images captured with cameras that have a large FoV always have a significant
non-perspective distortion. Such images can cause bad visual feedback for human
eyes and most importantly, it is very hard to perform computer vision tasks —
such as feature matching, or any kind of object detection — in these images. How-
ever, there are ways to remove these distortions. In this section, the calibration
method of Scaramuzza et al. [I3] is overviewed in brief.

2.1 Camera model

For this purpose, first, we have to define the camera model. The perspective
camera model can be easily used for a standard camera, but when we are con-
sidering a camera with e.g. fisheye lenses, there may be inaccuracies. This is
the reason why we are using a different camera model. Scaramuzza et al. [13]
introduced a general omnidirectional camera model that can be used for both
dioptric and catadioptric camera systems. In this model, we have two different
planes: the camera image plane, and the sensor plane. A point on these planes
denoted with w’ = [/ v/]" and u” = [u” v"]" respectively.

In Figure (I}, we can see the catadioptric case of the model. In the dioptric
case the sign of is reversed due to the lack of reflective surface. We can easily
observe that they are related by an affine transformation. We also introduce
an image projection function, which shows the relationship between the sensor
plane and rays emanating from the viewpoint. The complete model for general
omnidirectional cameras is as follows:

Ap = Ag(u”’) = Ag(Ru' +t) =PX, \>0, (1)

where X is a homogeneous coordinate of a scene point and P is the projection
matrix, containing extrinsic camera perameters, that are represented by a ro-
tation R and a translation t as P = [R]t]. By the calibration of the model we
mean the estimation of the affine parameters, that are stacked in matrix R and
vector t. g is the non-linear function that satisfy the projection equation. For
the latter one, we assume the following:

g(u//,v//) _ (u//,v//7 f(u”,v”))T (2)

where f(u”,v") = ag + aip + azp® + ... + app™. In the calibration, we are
estimating the coefficients denoted by p;, i € {1,...,n} and the polynomial
degree by n. p > 0 is the metric distance of the pixel w.r.t. the sensor plane.
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Fig.1: The catadioptric coordinate system. The camera model describes the
connection between the p direction of a 3D scene point and the corresponding
image point u”. Note, the function g is rotational symmetric around w” and
limited along u” and v”. Hence, the camera image is a circle in the sensor plane.

2.2 Camera Calibration

In the first step of the calibration, the affine parameters are computed up to a
scale factor o to reduce the number of unknown parameters to be estimated.
After performing the affine transformation, the relationship between u’ and u”
can be written as u” = au’. Thus, the projection equation can be rewritten as:

/ !

au u
Aglau) =X | av' | =)l v’ =PX. (3)
flap’) a +orp - +anp”

where ¢’ and v’ are pixel coordinates of a point on the image with respect to the
circle center, and p is the Euclidean distance from the circle center. The factor «
can be integrated into the depth factor A, thus the parameters to be determined
are: (ag,a1,...,an)-

We use planar patterns in different positions for calibration, similarly to
the well-known calibration method of Zhang [I5], so the extrinsic parameters
between the sensor plane and the planar object can be extracted. Let M;; =
(Xi; Y Zij]T and m;; = [u;; vij]T be a 3D point in the pattern coordinate
system and its corresponding point on the image respectively. We can assume
that Z;; = 0 as we are using a planar pattern. In order to solve the camera
calibration, we have to determine the extrinsic parameters for each image of the
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calibration pattern:

i1 T

Uij :11 i(/u ri Xy
AijPij = Aa Vij =P;X= r? 6J =|r Yij |
o +aip+ -+ anp” t:;’ 1 t' 1
. (4)
where r; = [rij T3 rgj] is the j-th column vector of rotation matrix R’.

Matrix R and vector t? are the extrinsic parameters for the i-th frame. In this
equation, we can eliminate the dependence from the factor A;; by multiplying
both sides by cross product with p;;. After the elimination, each p; point on the
pattern will produce three homogeneous equations:

v (7“31Xj + T‘SQYJ‘ + t3) — f(p (Tngj + T22Yj + tz) =0,
uj (131X +r32Yj +t3) — f(p) (r1n X +ri2Y; +11) =0, (6)
Vj (’I"31Xj + 7’321/3‘ + t3) — Uy (T’QlXj + ’I"QQYJ' + tg) =0

~

If we reformulate the third equation into the form NH = 0, where H =

T
[r11, 712, 721, 722, 1, t2]" and

—v1 X1 —01Y1 w1 Xy uY) —vy ug
N = : : : Lo ; (3)

- X; —nY; wX; wY; —v oy

then a homogeneous linear system of equations is obtained that can be optimally,
in the least squares (LS) sense, solved via an eigenvalue-eigenvector computa-
tion [0].

The estimation of A can be done by minimizing the expression with respect
to the criterion |[H||*> = 1. Because the columns of a rotation matrix are or-
thonormal, the solution can be uniquely determined along with the unknown
rg1 and r3o parameters. Doing this with every calibration image we can estimate
all of the extrinsic parameters except t3, which can be determined along with
the intrinsic parameters.

To estimate the intrinsic parameters, we are exploiting the first and second
equations shown above to estimate the coefficients (ag,as,--- ,a,) and t3 for
each calibration image. After reformulating the equations, the problem can be
reformulated as follows:

g
a

Ay Aypr - Aap? —u1 0--- 0 : B

Cl Clpl... Clp? _fUIO... 0 . l)1

D o ' |~ ’ )

Ap Appr -+ Appp 00 0o —uge | | 42 By,

Cr Crpr - Crppy 0 0+ —uy : Dy,
15 ]
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where Ai =1 X +rh Y+t B = (15, Xi +15,Y3) (10)

C; =1 X, + Y + 1, D; =uy (T§1Xz' +r8,Y;) .

The LS solution can be obtained by using the pseudoinverse. This way the

intrinsic parameters ai,as ..., a, will be estimated. To compute the best poly-

nomial degree n, we start from n = 2 , then we increase until the reprojection
error of the calibration points will be minimal.

(a) Original image. (b) Rectified image.

Fig. 2: Image rectification by calibrating the non-perspective camera parameters.

If the parameters are calibrated, the rectification can be carried out for the
images of the processed video sequence. An example is pictured in Figure[2] The
calibration algorithm works very accurately as it is clearly scene. The only draw-
back of the calibration is that the FOV of the rectified images are significantly
smaller, therefore, information close to the original border are lost.

3 Inverse Perspective Mapping (IPM)

IPM is the method of omitting the perspective effect. Camera works like
human eye works, the image is formed by the intersections of the optical rays
through the focal point with the so-called image or picture plane, and this pro-
jection is called perspective projection.

The perspective projection is given using the formula as follows:

T
U P11 P12 P13 P14 n yl
Vi | = | D21 P22 P23 P24 ZZ =P ;
1 P31 P32 P33 P34 f 11

, where u;, v; are the coordinates of the point 7 in the image plane, z;,y;, z; are
the spatial coordinates of the point 7. P is the so-called projection matrix.
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We have two problems in the perspective projection model (perspective effect):

— The actual parallel lines in nature are non-parallel in the image plane (they
intersect at the point of infinity).

— The distant objects appear smaller than the close ones to the focal point,
in other word the relation between the distances in the image plane and the
actual distances are nonlinear.

Homography-Based IPM is one of the techniques to omit the perspective
effect, it works by transforming one of the spatial plane to the image plane, it
eliminates the perspective effect of the transformed plane.

Since we perform plane-to-plane transformation, we can assume that one of the
spatial coordinate is always constant (e.g. y; = 0) without loss of generality, then
we can write the projection formula as follow:

Uj _p11 P13 p14_ T

Vi | = [P21 P23 P24 i

1 P31 P33 P3a] | 1
_p11 P13 p14_ hi1 hia hys

where | p21 pa3 paa| = |ho1 hoo hoz| = H,
| P31 P33 P34 | h31 h3a ps3

and H is the so-called Homography Matrix.

Since we are interested in calculating the speed of the vehicle and it travels
on the roadway, we choose the roadway surface as our spatial plane. The
homography-based IPM works in three steps: (i) Calculating the homography
matrix H. (ii) Build the pixel-to-pixel mapping matrix. (ii) Finally, perform
plane-to-plane transformation.

3.1 Homography Matrix

The homography matrix H has 8 DOF, we need four point correspondences
between the spatial plane (roadway plane) and the perspective image. It is shown
here that homography estimation can be solved as a homogeneous linear system
of equations. The hompgraphy projects the coordinates as follows:

= M@t hszit s hoa@i + haszi + has
Y hgimi+ hgezi +has’ " haixi + haoz + hag

After multiplication by the common denominator, it can be written that

ha1ziu; + haoziu; + hasu; — hi1x; — hioz; — hiz = 0,

h312;v; + h3o2iv; + hasv; — ho1xy — hoszg — hosz = 0.
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Fig. 3: Four yellow markers are placed in order to estimate the homography. Best
viewed in color.

Therefore, the final linear system is as follows:

h11
hia
his
ho1
h22 == O.
ha3
h31
h3a
hss |

—x; —2;—1 0 0 0 wujx; ujz; ug
0 0 0 —X; —Z; -1 ViX; Viz; U

We used four markers, see Figure 3] which form a rectangle with 12 x 2.5
m, the spatial coordinates are s; = [0 0] |, so = [25 0]7, s3 = [0 12]T,
and s4 = [2.5 12]7. For each marker corresponding image coordinates in the
perspective image are measured p; = [u; v;]T.

—S1,z —S1,y -1 0 0 0 P1,251,2 P1,2S1,y Pl,z le
0 0 0 —S1,2 —S1,y -1 P1,yS1,z P1,yS1,y Ply h12
—822 —S24y —1 0 0 0 p2uS2.0D2,052,y P2,c h13
0 0 0 —S82,x —S2,y -1 D2,yS2,x P2,yS2,y P2,y h21 -0 (11)
—S83.x —S83y -1 0 0 0 D3,253,2 P3,253,y P3,x h22 -
0 0 0 —s35 =53y —1P3483,2 P3,y53,y P3,y h23
—S4,0 —S4,y -1 0 0 0 P4,xS4,x P4,x54,y P4,z h31
| 0 0 0 —S4x —Say =1 PaySax PaySay Pay hiz

where indices (x,2) and (*,y) denote first and second 2D coordinates, respec-
tively.
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(a) Before a pedestrian crossing. (b) At crossroads.
Karinthy Frigyes Str., Budapest Dombdvari and Budafoki Str., Budapest

Fig.4: Left. Camera images, Right. Bird Eye’s View, obtained by estimated
homography.

By solving these eight linear equations using LS method, we get the values
of the homography matrix H. If the left coefficient matrix in Eq. [T1]is denoted
by C, the LS solution is the eigenvector of CTC corresponding to the least
eigenvalue [6].

3.2 Homography transformation

Then the estimated homography H can be applied in order to transform the
original pixels into their new positions. The computational cost for a single
frame transformation is O(wh), where w and h denote the width and height of
the image. The generated image is called Bird’s Eye View (BEV) or top-
down view, see Figure [4 for two examples.

When we performed IPM, we assumed that the roadway is a plane but in
the case when the roadway has elevations or some object is placed on it, IPM
generates distorted BEV but however, we accept the transformation as an esti-
mation.

4 Optical flow based speed measurement

In our approach, we propose a method to find the vehicle’s velocity vector based
on optical flow of the BEV. For each consecutive BEVs (BEV;, BEV, 1), the
translation vector is calculated then velocity vector is calculated based on the
change of the vehicle’s position. Two different optical-flow-based methods are
tested:

— Feature-based optical-flow.
— Dense optical-flow.

4.1 Feature-based optical-flow

The visual features are extracted from BEYV; using Shi-Tomasi corners detector
[7], the best 1000 corners are only considered.

(fi f2,- f2)



Optical Speed Measurement 9

f is the position of the feature j in BEV;.
Optical flow Lucas-Kanade feature tracker [2] is used to detect the new po-
sition of BEV; detected features in BEV;, .

CEARSY AR

Translation vector of feature j in BEV] is given by:

i pi+1l i i+1 ) i+1 i 1T
=1 == —fie fiy — il

Fig.5: Left. BEV image. Right. BEV with feature translation vectors, esti-
mated by [2].

Two issues emerge:

— Many translation vectors are detected but we are interested to detect only
the translation vectors related to the vehicle motion.

— When detecting the features in BEV; and BEV; 1, we assume that the whole
scene is fixed and only the vehicle travels but there might be moving objects
indeed.

We solve the issues using RANSAC (Random sample consensus) outliers rejec-
tion technique [5]. In each RANSAC iteration, a random translation vector t}
is selected and examined, we keep the translation vector fits best the features
translation in BEV; to the new positions in BEV,;; which has the maximum
number of inliers with threshold o. t* is the best examined translation vector
which has the maximum number of inliers, and —t is the vehicle translation
vector due to the fact that the vehicle moves in the opposite direction of the fea-
tures movement. In our test, we use 20 cm, 1000, and 0.95 for the threshold o,
max number of iterations, and confidence as RANSAC parameters, respectively.
The velocity vector is given by:

vi= —t'
Atime




10 Kastantin et al.

10.7 m/s | 38.5 km/h

Fig. 6: Estimated speed (bottom left) and vehicle velocity vector (right) are
visualized.

where —t?, , and Atime are the vehicle translation vector, the pixel size, and
the time interval between BEV;;; and BEV;, respectively. We visualized the
estimated values in every frame of the video as it can be seen in the Figure [6]

4.2 Dense optical-flow

Dense optical-flow method estimates the motion of the entire IPM image (all
pixels) unlike the feature-based method which estimates the motion for some
interesting corners and edges. We use Gunner Farneback’s algorithm [4] which
takes two consecutive frames BEV;, BEV, 1, and for each pixel in BEV; it esti-
mates the new location in BEV; .

In the same way we estimated the translation vector in feature-based optical-
flow, we use RANSAC [5] to find the vehicle translation vector and we define
two criteria:

— Magnitude threshold: a pixel should have a translation vector with at
least ¢; magnitude to be considered in the robustification step. We add this
criterion to prevent no texture pixels from dominating over other pixels.

— Minimum number of inliers: a translation vector should have at least
co inliers to be considered. We add this criterion to prevent small object
movement from affecting the vehicle motion estimation.

An additional error reduction technique is applied by using Kalman Filter
[8]. Kalman Filter works in two steps, the translation vector is corrected in the
correction step when a movement is detected using the aforementioned technique,
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Fig. 7: Left. Perspective image with estimated speed (bottom left) and vehicle

velocity vector (right) are visualized. Mid. Top-down (BEV) image. Right.
Top-down image motion with heat map.

otherwise the translation vector is predicted in the prediction step using the
translation vector of the previous frame and if no movement is detected for
more than 10 consecutive frames the vehicle is considered not moving.

5 Experiments

Our proposed technique estimates the velocity vector with good precision and
close to the real velocity vector when optical-flow correctly estimates the mo-
tion, and that is due to our robustification technique using RANSAC [5] outlier
rejection strategy.

The results are visualized in two videos, they are available at our websitd']
The main difference between the videos is the applied method to estimate the
optical flow. The results are visualized for both the feature-based method and
the one that uses dense optical flow.

The quality of the speed measurement can only be evaluated qualitatively as
ground truth data are not available. We basically think that the quality of optical
flow based speed measurement is satisfactory, however, there are short periods
within the videos when the speed is not realistic. For feature-based flow, it is
trivial that the speed cannot be accurately estimated if there are no trackable
features in the video. It is also a challenging problem to filter out the motion of
another moving vehicle. This cases are discussed below in short.

The Gunnar-Farneback dense optical flow seems to be a better choice as it
generates more flow. Principally, features can be detected and tracked around
road paintings, e.g. lane separators or zebra-crossing. In this cases, the speed
can be accurately reconstructed. This statement is true for both feature-based
and dense optical flow.

The whole trajectory and the computed speed charts are pictured in Fig-
ure In the charts, the magnitude and the angle of the estimated metric

! Resulting videos are available at | http://cg.elte.hu/~hajder/ELTECar/
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3.8 m/s | 13.5 km/h

13.8 m/s | 49.5 kigfh

(b) The velocity vector is estimated while the car travels with high speed.

Fig.8: Velocity vector estimation in different traffic scenarios. Left. Original
images with displayed speed in the bottom-left corner and visualized velocity
vector on the right. Right. IPM image with tracked features. Best viewed in
color.

velocity vector are visualized. The stops and turnings are highlighted as they
can be straightforwardly detected in the magnitude and angle chart, respec-
tively. The spread of the magnitude and speed chart is very high, thus, the
precision of the speed estimation is low. Therefore, it is proposed to use other
techniques to improve the quality of speed reconstruction. We plan to use 3D
vision methods [6] for this purpose, this is a possible future work.

A few examples are also visualized, see those in Figure |8 The original and
IPM images are on the left and right, respectively. Both the magnitude and
the direction of the velocity vector is visualized in the bottom-left and bottom-
right of the original images. The tracked feature points are pictured in the IPM
images.

Our technique still has some limitations. Some examples are exhibited in the
Figure [0] Estimating the velocity vector is difficult when the detected corners
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are located on a moving object, see in the example |§|(a). Another problematic
case is when not enough good features are detected by feature-based optical flow.
One situation for the latter case is in the picture @(b) Another problem appears
when the roadway is not a plane which causes the car to go up and down, in
turn it causes wrong estimation of the translation vectors as it is seen in the

subfigure [9c).

6 Conclusion

This paper addresses the problem of speed measurement from videos of a vehicle-
mounted camera. IPM images are computed for this purpose. The proposed
method works for both pin-hole and omnidirectional cameras. However, images
from latter ones should be rectified first, we propose the method of Scaramuzza
et al. [I3] in order to rectify non-perspective distortions. From the IPM video,
velocity vectors in 2D are estimated by both the Lucas-Kanade feature tracking
and Gunnar-Farneback optical flow. The metric speed vectors can be calculated
as the metric distances are known in the IPM images due to the marker-based
calibration process. The proposed approach is tested on real-world images taken
by our SJCAM SJ4000 digital event camera with high field of view.
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2.0-mifs | 7.3%km/h

(a) Wrong velocity vectors is estimated when the feature detector recognizes corners
which located on another moving vehicle.

2.0 m/s | 7.0 km/h

(b) Wrong velocity vectors is estimated when not enough corners are detected due to
lack of street lines.

Z.6.m/s.| 8.3 kin/h

(c) Wrong feature translation vectors are calculated due to road elevation.

Fig.9: Limitation examples of the proposed method. Left. Original images with
displayed speed in the bottom-left corner and visualized velocity vector on the
right. Right. IPM image with tracked features. Best viewed in color.
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Fig. 10: Top. Trajectory of the vehicle during the video. Bottom-Left. Magni-
tude of the speed w.r.t. time. Bottom-Right. Angle of the speed w.r.t. time.
Interesting results are highlighted by red bubbles: the stops (left) and turnings
(right) can be easily detected on the speed and angle charts, respectively.
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