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Abstract. In the framework of an industrial project, we address the problem of
label inspection on roughly flat, plastic bottles (flasks) containing dishwashing
liquids, shower gels, skin care cremes, etc. A flask is placed vertically in a spe-
cial box, rotated around its vertical axis, illuminated and viewed by a camera.
Several images are acquired when the front label is found to be parallel, or close
to parallel, to the image plane of the camera. Defective labels are detected and
their flasks removed for re-labelling. Three typical types of label defects are con-
sidered. A novel method for automatic label inspection is proposed. Results of
initial tests on numerous flasks of different kinds are shown and discussed.

1 Introduction and Previous Work

In this paper, we present a novel label inspection system developed in a recent industrial
project1 whose goal was to automate the process of label defect detection using efficient
image acquisition, processing and analysis.

The literature related to research and development for label defect detection is quite
limited because of the industrial character of the problem. More information can be
found in the related patents, so we are going to discuss some of them, as well, despite
the fact that most of the patents do not provide all necessary technical details.

Short paper [2] provides a brief description of a method for checking the presence of
a label on the inspected bottle. Potential label defects are not considered. PhD disserta-
tion [6] provides a very initial overview of bottle checking tasks including the detection
of missing, empty (not printed), and wrongly oriented labels. Otherwise, the dissertation
is devoted to the detection of wrongly filled bottles rather than label checking.

Study [5] presents an experimental setup for checking labels printed on the surfaces
of bottles and flasks. A detailed description of the technical and algorithmic components
is provided. An image of the printed text is acquired with a high-resolution camera, pro-
cessed, binarized, then compared to the ideal, reference text in order to detect printing
detects. In our study, we address the problem of detecting the defects caused by the tool
placing the label on the surface of the bottle rather than the quality of printing. Our task
does not require a high-resolution camera since the defects are visible in relatively low
resolution, as well.

1 “Plastic bottle extruding and labeling development for building new innovative, environment
friendly packaging materials and technology (GINOP-2.2.1-15-2017-00075).”
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Early patents [9] and [3] describe sophisticated mechanical devices equipped by
photo-sensing scanners that scan the arriving bottles and check them for the presence
and proper alignment of the label. Although the patents contain some interesting ideas,
and the proposed systems are claimed to be able to cope with transparent and semi-
transparent bottles, the mechanism of the horizontal line-by-line photo-scanning is def-
initely obsolete, imprecise, and not robust.

A more recent patent [10] proposes an optical inspection system for defect detection
in colored labels placed on the side walls of cylindrical beverage cans or other types of
bottles. The cans arrive in fixed vertical position but arbitrary orientation around their
axes. They are illuminated and viewed by an optical head that scans them and generates
two kinds of color signatures. After a learning period on a large number of good labels,
two reference signatures are obtained and checked against the inspected labels. A can
is rejected if its label significantly deviates from a reference signature.

Finally, patent [8] describes a framework system for detect detection within semi-
opaque containers such as labeled plastic or glass bottles and flasks. To find a non-
conforming object of unknown shape and location within the bottle, two consecutive
light sources are used, and two images are acquired. The difference image is then ob-
tained in order to eliminate the label and find the defect.

The structure of the paper is as follows. In Section 2, we specify the task of label in-
spection and discuss its challenges. The proposed defect detection framework involving
a number of distinct algorithmic steps is presented in Section 3. The results of testing
the proposed system are shown and discussed in Section 4. Finally, Section 5 concludes
the paper by a brief description of open questions and future work.

2 Task and Challenges

Given an input flask image and some reference image data discussed later in Section 3,
the goal of the proposed method is to provide statistical data sufficient for reliable clas-
sification of the flask label into two classes, good label and defective label. Defective
labels are rare, and they cannot be used for efficient learning.

Examples of good labels are shown in Figure 1, while a few typical label defects
are illustrated in Figure 2 where the most distinct and easy to detect defect category is
a partially missing (part.miss.) label, while ‘mispl.’ means misplacement. The typical
resolution of the images varies in the range of 400×800 to 300×1100 pixels depending
on the shape of the inspected bottles.

The detectability of the other two types of defects strongly depends on the degree
and kind of misplacement or crinkling. As discussed later, a correct and well-visible but
wrongly placed, e.g., skewed, label can pose a problem. Similarly, a crinkle can be very
narrow, resulting in a small defect area.

Further potential challenges are as follows:

– Varying illumination. Despite the controlled conditions, flask illumination varies
within image and in time.

– Varying orientation and image of flask due to imprecise fixing and rotation around
the vertical axis.
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good 1 good 2 good 3 good 4

Fig. 1. Set 1: Good labels.

misplaced 1 part.missing misplaced 2 crinkled

Fig. 2. Set 1: Defective labels.
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– Moderate perspective distortion of label since the camera is relatively close to
bottle.

– Large featureless areas in some kinds of labels, which can make the matching of
the reference and input labels more difficult.

– Transparent bottle with labels on both sides, where the image of the viewed label
can vary depending on flask pose.

– Very fine textures formed by texts with tiny letters are hard to compare under
limited image resolution and positioning precision.

The proposed method attempts to address most of these challenges. However, some
of them still pose problems and need further analysis for future development of the
method.

3 Method for Defective Label Detection

The proposed method operates with the input flask image and additional input data.
For each type of flask with a given label, a reference flask image with defect-free label
is manually selected for future comparison to the input labels. Then, the label area is
manually extracted from the reference image, which provides the reference label. This
is done only once for each type of bottle and label. A reference label is a rectangular
framework image with the label overlaid on the dark background. Finally, the binary la-
bel mask is automatically extracted from the reference label image by thresholding and
post-processing. The latter includes gap filling and slight shrinking to ensure compari-
son within the label area. Figure 3 illustrates the additional input data of the proposed
method.

reference flask reference label label mask

Fig. 3. Sample reference flask and input of the proposed program, reference label and its mask.
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The major steps of the proposed method are as follows:

1. Extract distinct and robust local SURF features [1] in the reference and input im-
ages.

2. Assign a SURF descriptor [1] to each feature.
3. Using the features and their descriptors, find the perspective mapping of the ref-

erence label onto the input image.
4. Map the reference label and its mask onto the input image frame.
5. Shift-correct intensity in the reference label and the corresponding (masked) area

of the input image by subtracting their mean values.
6. Calculate pixel-wise absolute intensity differences between the reference and the

input in the mask area to obtain the difference image.
7. Calculate the histogram and statistics of the difference image.
8. Apply a preset threshold to the difference image within the mask to obtain the

binary defect mask.
9. In the defect mask, remove small connected components, i.e., those with area

below a preset area threshold.
10. Calculate the total defect area after the thresholding and output it along with the

difference image statistics.

Figure 4 illustrates the process of feature extraction and matching in the reference
and input images. Robust feature correspondences are established under the assumption
of possible perspective distortion between the reference and its counterpart in the input.
It is also assumed that the surface of the flask carrying the label is roughly flat, and
most of the label is visible in the input. The perspective mapping allows the method
to cope with moderate perspective distortion, including rotations and scaling due to the
potential variation of the distance between camera and bottle.

After the feature matching, the reference label and the label mask are mapped onto
the input image frame as illustrated in Figure 5. (The input image is shown in Figure 4.)
The mapping is robust to wrong correspondences and feature outliers assuming that
the number of correct correspondences is sufficient to apply a RANSAC-like proce-
dure [4]. In steps 1–4, we use functions SurfFeatureDetector, SurfDescriptorExtractor,
FlannBasedMatcher, findHomography, and warpPerspective provided by the OpenCV
library [7].

After the mapping, we have the reference and the input labels matched, with the
reference mask specifying the part of the input image where the comparison of the
two labels should be done. However, direct comparison of the labels can be misleading
because of the varying illumination mentioned in Section 2 among the challenges of the
task. To cope with this effect, we shift-correct the intensities of the two labels within
the mask by subtracting the corresponding mean values.

After such correction, the pixel-wise absolute difference between the labels is an
adequate representation of the deviation from the reference. A relatively low, conser-
vative preset difference threshold indicates the locations of significant deviation which
are potential defects. Figure 6 shows the absolute difference image and its thresholded
binary version for the input image of Figure 4.

Finally, we calculate a number of statistical features that can be used to discriminate
between correct and defective labels. The most straightforward feature is the number
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Fig. 4. Illustration of feature matching.

reference label label mask

Fig. 5. Results of mapping onto input image frame.
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absolute difference thresholded

Fig. 6. Absolute difference within mask before and after thresholding and removal of small com-
ponents.

of the above-threshold pixels in the thresholded difference image, that is, the area of
the potential defects. We also calculate the basic statistics of the absolute difference
image, namely, the mean and the median values, the standard deviation (variance), and
the mean absolute deviation from the mean.

Altogether, we have five features, but their discriminative powers are different. For
example, the median tends to discard outliers that are indicative of defects, while the
standard deviation (stdev), on the opposite, is sensitive to the outliers. Figure 7 provides
examples of absolute difference histograms of a defect-free and a defective label, where
the difference in variance between the two is clearly visible. After preliminary tests, we
decided to use two indicators of defects, the standard deviation of the difference image
and the area of its thresholded version.

The proposed method has two main parameters, the difference threshold and the
area threshold. The former specifies the lowest difference considered potentially defec-
tive, the latter the smallest connected component area to be taken into account: smaller
components are removed in post-processing. The default values of the two parameters
are 80 (greylevels) and 40 (pixels), respectively. These values should be adapted to the
types of label and bottle, as well as to the illumination conditions.

The overall processing time per image was within 1 sec on a 10-years old PC without
any GPU support. This time can be significantly reduced if the system is implemented
on a much more efficient, modern computer with GPU support.
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defect-free label defective label

Fig. 7. Sample absolute difference histograms of a defect-free and a defective label.

4 Initial Test Results

In this section, we present numerical results for four different kinds of flasks and labels
and demonstrate that the selected features, the defect area the the standard deviation,
can be efficiently used to detect defective labels. Each set consists of four good labels
(flasks) and four defective labels of three different kinds, misplaced (mispl.), partially
missing (part.miss.), and crinkled.

Set 1. The good labels of this set, with the flasks, are shown in Figure 1, while its
defective labels are demonstrated in Figure 2. Table 1 contains the feature values for
the good labels, Table 2 for the defective ones. One can observe significant differences
in both features between the correct and the defective labels. In particular, all noisy
connected components, if any, were removed in the good cases, while the overall defec-
tive areas in the bad cases are convincingly large. In the standard deviation, the border
between the two cases seems to be around 12–15.

feature good 1 good 2 good 3 good 4
defarea 0 0 0 0
stdev 7.78 8.12 6.92 7.60

Table 1. Feature values for good labels of set 1.

feature misplaced 1 part.missing misplaced 2 crinkled
defarea 2830 3418 656 21201
stdev 22.56 22.62 15.39 38.80

Table 2. Feature values for defective labels of set 1.
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Set 2. For simplicity, we do not show the good labels of the remaining sets; their
characteristic feature values are only provided. For set 2, the largest standard deviation
is 7.95, with all defect areas being zero again. The defective cases of the set are shown
in Figure 8, their feature values in Table 3. Here again the differences between the two
subsets are convincing enough.

misplaced 1 part.missing misplaced 2 crinkled

Fig. 8. Set 2: Defective labels.

feature misplaced 1 part.missing misplaced 2 crinkled
defarea 2663 2827 1185 692
stdev 29.27 25.92 24.18 20.56

Table 3. Feature values for defective labels of set 2.

Set 3. The defective cases of the set are shown in Figure 9. The feature values are
given in Table 4. For the good part of this set, the largest standard deviation is 10.28,
and all defect areas are zero as before. We observe that in this case two of the defect
areas and three of the standard deviations are small, which can potentially affect the
reliability of decision making. The sources of the problem will be discussed later in
Section 4.1.

feature misplaced 1 part.missing misplaced 2 crinkled
defarea 153 72 72 3533
stdev 10.71 11.11 10.75 29.25

Table 4. Feature values for defective labels of set 3.

Set 4. The defective cases of the last set are demonstrated in Figure 10, the feature
values are presented in Table 5. For the good part of this set, the largest standard devia-
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misplaced 1 part.missing misplaced 2 crinkled

Fig. 9. Set 3: Defective labels.

tion is 9.05; all defect areas are zero. While the defect areas are large or relatively large,
half of the standard deviations are quite small similarly to the previous set. The reasons
are discussed below.

misplaced 1 part. missing misplaced 2 crinkled

Fig. 10. Set 4: Defective labels.

4.1 Analysis of problematic cases

The missing part of the second label of Set 3 (Figure 9, part.missing) contains few fea-
tures and is almost transparent, i.e., does not significantly differ from the background
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feature misplaced 1 part. missing misplaced 2 crinkled
defarea 9882 269 339 1929
stdev 40.43 12.65 13.51 23.45

Table 5. Feature values for defective labels of set 4.

plastic. The wrong poses of the otherwise good misplaced labels are partially compen-
sated by the perspective mapping. These effects result in small defect areas and standard
deviations below a potential threshold.

The same applies to the partially missing label and the second misplaced label of
set 4. (See Figure 10.) However, in this case the defect areas and the standard deviations
are larger than for set 3 because the missing part is more characteristic and the labels
are larger. Part of the first misplaced label is not visible, which cannot be compensated
by mapping. Here, both features definitely indicate the defect.

Let us now consider a few cases when the proposed method can potentially fail.
Figure 11 illustrates the problem faced when the flask is transparent. (The images were
enhanced by gamma correction for better visibility.) Both good labels are classified as
defective because they significantly differ from the reference in the highlighted areas.
These differences are caused by labels on the opposite side whose visible parts vary
with flask orientation.

reference label good label 1 good label 2

Fig. 11. Reference label and two instances when the method failed.
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Figure 12 shows a case when the above mentioned misplacement compensation can
lead to a failure. After the perspective mapping, the absolute difference image has only
minor areas of deviation, and the misplaced label is not detected.

reference label misplaced label absolute difference

Fig. 12. Reference label, undetected misplaced label, and absolute difference. The label images
are shown enhanced for better visibility.

In some cases, obtaining precise mapping can be a non-trivial problem. Figure 13
provides an example when a large number of the feature matches is not correct because
of the fine label texture and the lack of distinct, robust features. The feature points found
in the fine texture are neither distinct nor robust, and many of them are mismatched.
Thanks to the robustness of the RANSAC-like homography calculation procedure ap-
plied by the proposed method, the obtained mapping is nevertheless correct leading the
proper recognition of the misplacement defect. Note that such cases are relatively rare
as most labels contain a sufficient number of suitable features.

Even when an appropriate mapping of fine-textured reference label is found, com-
paring the reference to the input can be problematic. Figure 14 shows an example of
the situation when the thresholded difference image contains a sufficient number of the
above-threshold pixels. However, due to the fine texture, the defect is split into a large
number of components whose areas are often below the area threshold. This results in
the elimination of many small components and the final less distinct defect area.
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Fig. 13. Example of non-trivial feature matching due to fine texture and lack of distinct features.

input abs.difference thresholded area-filtered

Fig. 14. Example of problematic label comparison due to fine texture.
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5 Conclusion and Outlook

In our initial experimental study, we processed images of over 100 flasks of different
types and with varying labels. Both good and defective labels were classified. In a great
majority of the cases a correct decision was made in acceptable time, that is, the pro-
posed solution is a feasible approach to this industrial application.

However, as discussed in Section 4.1, a few questions are still open. In particular,
the following problems need to be addressed in future research and development:

– To indicate the misplacement compensation of a rotated or shifted label, one needs
to measure the position and orientation of the main axis of the bottle. This can be
done by finding the contours of the bottle. For bright flasks, the solution is simple,
but the images of dark flasks whose contours are poorly visible may need pre-
enhancement.

– Coping with transparent flasks also seems to be difficult, and at the moment we do
not have clear ideas of how to approach the problem.

– Wrong mappings due to featureless labels or labels dominated by fine texture can
be indicated by a low number of distinct features whose strength is measured by the
extractor. The reliability of the homography estimation provided by the estimator
can also facilitate the solution of the problem.

– In the case of labels with very fine texture (tiny letters), selection of an optimal,
lower defect area threshold can probably be helpful in avoiding the removal of the
small parts of a defect region.

– Alternative measures of discrepancy between the matched reference and input la-
bels will be considered.

– Large-scale tests with much more input data under varying conditions are needed
to demonstrate the practical applicability of the proposed method.
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