
Non-Rigid Registration of

Visual Objects

Ph.D. Thesis

by

Zsolt Sánta

Supervisor:

Dr. Zoltan Kato

Doctoral School of Computer Science

Institute of Informatics

University of Szeged

Szeged

2018





Contents

Contents i

List of Figures iii

List of Tables vii

List of Algorithms ix

Notation and Abbreviation xi

Competetive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgment xiii

1 Introduction 1

2 Fundamentals 3

2.1 Image Registration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Deformable Registration of Triangular Surface Meshes . . . . . . . . . 9

2.2 Camera Network Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Relative Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Register the Cameras into a Common Frame . . . . . . . . . . . . . . . 13

2.2.3 Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Deformable Registration of 3D Objects 17

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Modeling the Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Polynomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Thin Plate Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Efficient Computation of Integrals over 3D Objects . . . . . . . . . . . . . . . 23

3.3.1 Voxel Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Triangular Surface Mesh Representation . . . . . . . . . . . . . . . . . 26

3.4 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Voxel Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Triangular Surface Mesh Based Algorithm . . . . . . . . . . . . . . . . 34

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Synthetic Tests on Volumetric Data . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Synthetic Tests on Surface Data . . . . . . . . . . . . . . . . . . . . . . 42

3.5.3 Robustness Against Noise . . . . . . . . . . . . . . . . . . . . . . . . . 43

i



ii CONTENTS

3.5.4 Medical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.5 3D Face Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Robust Registration of 2D Images 55

4.1 Registration Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Affine Alignment of Occluded Shapes . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Calculating the Integrals Efficiently . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Non-rigid Registration of Covariant Functions . . . . . . . . . . . . . . . . . . 64

4.3.1 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Ad-hoc Mobile Camera Network Calibration 77

5.1 The Calibration Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Relative Pose of the Cameras Within the Network . . . . . . . . . . . . 79

5.1.2 Localizing the Camera Network in the 3D Scene . . . . . . . . . . . . . 80

5.1.3 Registering the Camera Network with the Extracted Plane . . . . . . . 82

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Results on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusions 91

Appendix A Summary in English 93

A.1 Key Points of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix B Summary in Hungarian 97
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Chapter 1

Introduction

Computer vision is a field of analyzing and interpreting visual objects by making use of var-

ious computational tools. The fundamental aim is to create automatized systems for such

tasks, to help or, in some cases, replace human interpretation. Historically, first applica-

tions were working with two-dimensional (2D) data. Nowadays with the development of

new three-dimensional (3D) acquisition techniques, like Lidar, Microsoft Kinect
TM

or Intel R©

RealSense
TM

, processing 3D data becomes more and more important.

An important preparatory step in almost every computer vision process is image registra-

tion. The main goal of this task is to estimate mappings between different observations of the

same scene. The most frequent problem is to match the origins and orientations of the main

axes of the underlying coordinate systems by finding a rigid alignment between the input.

While in many cases the underlying deformation can be efficiently handled by this simple

alignment, there are various applications where we have to deal with larger deformations.

An example for such problem is when the difference in the observations are caused by several

independent motions, yielding a non-global deformation between them. The state of the

art provides efficient methods to cope with these problems, however, there are lots of open

questions as well.

The dissertation addresses the author’s research results in multiple areas of image regis-

tration. These results are providing solutions for estimating parameters of a wide range of

transformations consisting linear, perspective and deformable models.

The thesis is structured as follows. In Chapter 2, we give a brief introduction to the

fundamental concepts behind the addressed topics. The state of the art is also discussed here.

Then, the next three chapters present the contributions of the thesis. In Chapter 3, a general

framework is presented to solve deformable registration problem between 3D objects. The

parameters of the pursued transformation are directly provided as a solution of a system

of non-linear equations. The framework is generalized to different input representations,

leading to efficient implementations for each case. The practical applications include 3D face

alignment, lung CT, and brain surface registration.

In Chapter 4, robust registration of 2D images are investigated by addressing two interest-

ing problems. The first one deals with how to handle larger segmentation errors (occlusions

and disocclusions) in the input data using geometric information only. This problem is a great

challenge for area-based methods, working on the whole image domain to estimate a solu-

tion. The proposed approach is built on affine transformations, thus it is able to work with

camera images taken in less controlled circumstances (e.g. processing images of surveillance

systems).

1



2 1. CHAPTER. INTRODUCTION

The second problem considers an ambiguity issue caused by large physical deformations

when using geometric information only. Global shape symmetry is a well-known example for

a possible cause of such ambiguity, albeit working with non-linear deformations inherently

leads to multiple equivalent solutions at the level of shapes. The presented algorithm is able

to work with more information by making use of a pair of covariant functions. Herein, we

show an example for using simple grayscale intensity functions.

Finally, in Chapter 5, a new approach is presented for calibrating ad-hoc networks com-

posed of a set of smartphones. These phones have become very popular in the last couple

of years, with powerful embedded processors, networking capabilities and multiple types of

sensors. The algorithm utilizes the distributed architecture of the network by making use

of parallel processing. The proposed approach is able to align the camera network to an

arbitrary chosen 3D plane, containing a low-rank pattern.



Chapter 2

Fundamentals

In this chapter we will introduce the two central topics of the current thesis: image regis-

tration and camera network calibration. The topics are closely related since in several steps

of the calibration process we have to work with the outcome of a registration algorithm.

Moreover, the whole calibration process could be considered as a registration approach since

the fundamental aim behind both topics is to reconstruct a mapping function between the

input domains.

2.1 Image Registration Methods

Registration is the process of establishing geometric relationships between two or more

images [1–4]. The aim is to express the input data in the same spatial space. It is a

fundamental task in many vision-based systems when the input is coming from different data

sources, e.g. images of the same scene taken with different cameras, times or viewpoints, such

as shape alignment [5–7], motion estimation and tracking [8–10] or medical imaging [4,

11–15].

When registering a pair of observations of the same scene, the general map between the

coordinate systems will be a vector field φ : Rn → R
m and the registration process address to

recover this mapping from the input data. While in the current section we will assume that

n = m ∈ {2, 3}, in Section 2.2 we will investigate projections between different dimensions

too. In practice only discrete approximations of the input data are available, therefore the

deformation field could be reconstructed only approximately as well.

While in several cases it is convenient to approximate the general deformation in a point-

wise manner, it is a common practice to reduce the complexity of the registration problem by

replacing the general map with a parametric deformation model [2, 4, 16, 17]. In such cases,

the number of parameters correlates with the degrees of freedom of the transformation. The

applicability of parametric models depends on the particular application. As an example,

when we assume linear motion between the observations, it is quite straightforward to use

an n-dimensional linear map with n(n+ 1) parameters.

Following [16] and [4], the deformation models could be organized into three main

groups: physical model based, models derived from interpolation and approximation theories

and knowledge-based geometric transformations. In some applications, the transformation

is needed to ensure special properties, like inverse consistency, topology preservation or to

be a smooth diffeomorphism. These properties can be implemented to most of the models

3



4 2. CHAPTER. FUNDAMENTALS

expressed as part of the regularization [4, 16].

The next major factor in creating the right algorithm for a particular problem is observing

the input representation. In 2D the standard representation is a digital image sampled on a

regular grid by a simple digital camera or other sensing devices. A cell of an image is called

a pixel and it is the smallest measurable unit by the camera with predefined dimensions

(based on the parameters of the particular device). Each pixel holds the measured light

intensity of the corresponding point of the observed scene. Since this is the smallest unit in

this representation, there is no ”gap” between the neighboring elements. The representation

could be extended to 3D as well, where a cell is called voxel. In 3D, these images are usually

obtained by a kind of tomographic reconstruction [18].

After image acquisition, the input is usually preprocessed by multiple low-level techniques

like point-wise filtering, image segmentation or building a multi-scale representation by

making use of a pyramid technique [19]. Since in the current work we will focus on high-

level operations, for most of the proposed algorithms we will assume that the Regions of

Interest (ROIs) are already obtained by an image segmentation algorithm. In addition, for

shape-based approaches, we will assume the availability of the shape contours or object

surfaces as well. Reviewing of the image segmentation approaches is far beyond the scope

of the current work and in most of our cases, segmentation is obtained via simple methods

like intensity thresholding.

2.1.1 State of the Art

In the last few decades, several good surveys and textbooks have been published on image

registration [1, 2, 20], including a comprehensive survey on deformable medical image

registration in [4]. Although most of the well-known approaches are focusing on registering

two-dimensional (2D) images, recently numerous efficient algorithms for three-dimensional

(3D) surface registration and matching have also appeared in the literature [21–25].

Surveys on image registration methods are usually investigating the whole registration

pipeline of the observed approaches. The key elements in these pipelines are detecting

and matching salient objects of the scenes and estimating the deformation by a particular

numerical procedure [2, 4]. While a complete review of the state of the art is well beyond

the scope of the current work, we will give a brief introduction structured around the main

methodological aspects of the available methods. Similarly, despite the fact that many

conceptual and methodological similarities can be found between the image registration and

the optical flow methods, we will limit our review to the registration approaches only. A

recent survey of optical flow methods could be found in [26].

From a methodological point of view, the registration approaches can be differentiated

into two main groups: geometric (or landmark-based) methods and area-based (or iconic)

approaches [4]. The fundamental difference between these groups is while the geometric

methods are relying on extracted landmarks placed in salient image locations, the area-

based methods are using the whole image domain in an aggregated manner to determine the

transformation. Therefore geometric methods could be easily made robust against outliers

and missing data, but they are challenged by landmark localization and correspondence

establishing problems. The accuracy of the landmark extraction has a great influence on the

registration accuracy and outliers caused by wrong correspondences could introduce further

problems into the estimation.

Iconic approaches are typically relying on the availability of rich radiometric information
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which is used to construct a similarity measure based on a kind of intensity correlation. The

aligning transformation is then found by maximizing the similarity between the objects,

which usually yields a complex non-linear optimization procedure. These methods have

higher accuracy compared to the geometric approaches, but since they use the whole image

for the registration, thus the computational complexity could be higher as well. Moreover,

most of the practical similarity measures will eventually lead to the optimization of a non-

convex energy function, therefore the initialization has a great influence on the outcome.

Handling occlusions and disocclusions is also an important issue due to the global nature of

these methods. Hybrid approaches are also available, combining the best properties of both

worlds [4].

Geometric Methods

Now let us elaborate the review by first observing geometric methods. These methods are

usually build up from two major steps [4, 20]:

1. detect salient image locations and extract local image properties (features),

2. infer the pursued geometric relationship using the extracted landmarks.

The detection phase of Step 1. could be realized as an outcome of an image segmentation

method (like edge or corner detection) or by making use of a robust keypoint detector

algorithm [27–32]. While we refer as ”points” to the extracted elements, have to mention

that the obtained landmarks are not necessarily built up from one point, but could be edges

or regions as well. In practice, however, most of the available methods are working on

individual point sets, therefore either a specific point of the landmark (e.g. the centroid of

the extracted region) is used in the subsequent steps (see the experiments from [32] for

example) or the extracted landmarks considered as an unstructured set of points.

Over the years the problem of point detection and description have been studied intensely

by the computer vision community developing successful methods like SIFT [27], SURF [28],

ASIFT [29] or KAZE [30, 31]. These methods are built upon the results of scale space

analysis. The main idea behind these approaches is to create a multiscale representation

from the input images in order to detect and describe the landmarks on different scale levels,

hence achieving scale invariance. Traditionally Gaussian scale space have been used for such

tasks obtained by applying multiple Laplacian of Gaussian (LoG) operators to the images.

However, this procedure is impractical because its high computational complexity. In order

to overcome this limitation, Lowe’s SIFT [27] is using Difference of Gaussian operators to

approximate the LoG and the landmarks are obtained as local extrema in this representation.

This approximation reduced the running time to an acceptable level. Further enhancements

have been achieved by the Speeded-Up Robust Features (SURF) [28] through approximating

the derivatives of the Gaussian by simple box filters. Morel and Yu [29] proposed a fully affine

invariant framework for SIFT-like features by simulating the longitudinal and latitudinal

angles of the camera as well. Using these modifications enabled the extracted features to

become fully affine invariant, at the expense of higher computational cost.

While the Gaussian scale space has some nice properties like its straightforward compu-

tation and robustness against Gaussian noise, the Gaussian blurring does not respect the

natural boundaries of the objects. This, unfortunately, reduces localization accuracy and dis-

tinctiveness of the features. In order to overcome this drawback, Alcantarilla et al. propose

to use a nonlinear scale space by means of nonlinear diffusion filtering [30, 31].
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Once we have the detected landmarks, we can advance to the next step to infer the

pursued geometric relationship. In landmark-based methods, this is usually done in two

phases [4]. First, a sparse correspondence is established by matching the descriptors of the

extracted landmarks. Then, if it is needed by the particular application, a dense displacement

is inferred using the sparse correspondences. This is achieved by fitting a parametric model

to extracted points.

The landmark matching is preceded by the process of extracting image or shape properties

from the detected keypoints. From the current point of view, the properties are either

invariant or covariant with respect to the physical deformation. An invariant property does

not change due to the physical deformation, therefore they used to obtain correspondences

between the different observations of the landmarks. A covariant property, however, will

change accordingly to the deformation, thus they are able to measure the effect of the

deformation and eventually estimate the spatial transformation. While each of the surveyed

detectors has its own invariant feature descriptor (i.e. a multidimensional vector containing

invariant properties), the covariant properties are usually limited to the spatial coordinates of

the landmarks. Therefore, current methods are either based on matching extracted invariant

descriptors or minimizing spatial distance of the landmarks.

A detailed review on descriptor matching techniques is out of the scope of the current

work, for more details refer to [20]. Briefly, the main idea behind the match is to compare the

extracted feature vectors by making use of a distance function (in most cases the Euclidean

distance is a good choice). Then, we can assign one-by-one correspondences by taking the

closest pairs of points. In order to reduce the possible ambiguities, it is a good practice

to assign a rank to each matching by observing the distance ratio between the closest and

second closest point in the feature space and reject the matching if the rank is below of an

arbitrary threshold.

Once the correspondences are available, the parameters of the transformation can be

estimated using the landmark locations [20, 33, 34]. The model specific estimators are

constructed to maximize the robustness against various types of noise and inaccuracy. The

most frequently used family of estimators is based on the least squares approach, thus it

aims to find a solution which minimizes the Sum of Squared Differences (SSD) between the

transformed coordinates of the source point set and the target point set. These estimators

are intended to be robust against Gaussian noise, but they are ineffective in the presence of

outliers, i.e. bad correspondences or points deforming differently from the actual physical

deformation [20]. M-estimators are another example where the SSD function is replaced by

an arbitrary function, which increases less rapidly with increasing residuals [20].

Another common way to deal with outliers is to use the RANSAC algorithm jointly with

the model fitting method [35]. Herein, we randomly sample the minimal number of point

correspondences to fit the model. Then using the acquired transformation, a model specific

distance function is evaluated in all point correspondences. The current model’s inlier set is

established by thresholding the distances for each pair of correspondences. Eventually, the

algorithm will choose the biggest inlier set as its result.

Now, let us observe methods using invariant feature descriptors. SIFT descriptors are

known to be invariant against rotation and scaling, which is achieved by first estimating the

scale and the main orientation of each keypoint. Then using a rotated subregion around

the landmark’s position, a 3D histogram is created from the image gradients [27]. SURF

uses similar oriented regions around each landmark locations, but the statistics obtained as

a summation of Haar wavelet responses [28]. These descriptors are usually composed of



2.1. IMAGE REGISTRATION METHODS 7

128 elements, but it also depends on the parametrization of the algorithms (e.g. the size of

the subregions). The first version of KAZE uses SURF descriptors computed in its nonlinear

scale space [30], while the Accelerated KAZE estimates modified Local Difference Binary

(LDB) [36] features based on simple binary tests on intensity and gradient data [30].

A recent method for utilizing invariant descriptors have been presented in [37]. This

robust estimation based approach iteratively determines the parameters of a transformation

from a reproducing kernel Hilbert space (RKHS) and gives the inlier set of correspondences

as well. The estimation made by a novel algorithm based on the L2E formulation [38]. For

each iteration, the initial point correspondences are established by making use of extracted

SIFT landmarks in 2D and on MeshDOG/MeshHOG keypoints [39] in 3D.

Let us continue our survey with the spatial methods, i.e. methods based on covariant prop-

erties only. The observed methods are either using an alternating scheme to simultaneously

determine the correspondences and the transformation [40, 41] or extract the parameters

directly [5, 42].

The most common algorithm to find the best geometric transformation between two point

sets is the Iterative Closest Points (ICP) algorithm [40, 43]. This approach is based on the idea

of assigning the correspondences of the source point set by choosing the closest point (w.r.t.

the Euclidean distance) from the target set in each iteration. The process aims to minimize

the SSD function between the corresponding points. The classical ICP algorithm is used to

estimate rigid-body transformations only, but through the years several ICP variants have

been proposed for transformations with higher Degrees of Freedom (DoF) [44]. Moreover,

there are methods introducing context specific enhancements as well [45, 46].

The Bidirectional Affine ICP (AICPBD) [44] extends the ICP idea by introducing a bidirec-

tional distance based least-square problem for solving the affine registration between point

sets. The original ICP method is inherently ill-posed for affine registration since in extreme

cases an affine transformation is able to transform the whole source point set into one point

of the target set causing minimal SSD value. The bidirectional distance, however, is able to

handle this problem by estimating the closest points from the target point set to the source

set as well using the inverse transformation.

An early result of robust point matching introduced in [41], where the proposed algorithm

alternates between estimating the correspondences with a soft assign method and computing

the underlying deformation by making use of an arbitrary deformation model. Since the

authors used Thin Plate Splines (TPS) for their experiments, this algorithm is often referred

as TPS-RPM by the scientific community.

Representing point sets using Gaussian mixture models is another convenient way to solve

the registration problem between point sets. In [6, 42], a probabilistic model is proposed

where a Gaussian mixture with centroids corresponding to the input point set is fit to the

target set by maximizing the likelihood. Thus, an energy function, composed of the negative

log-likelihood and an additional regularization term, is minimized using the Expectation-

Maximization (EM) algorithm [47]. The transformation can be modeled by an arbitrary

parametric model, like affine or rigid-body [6] in linear and a Gaussian kernel based radial

basis function (RBF) model in non-rigid cases [42]. In [5], both point sets are represented

by Gaussian Mixture Models and then the L2 distance of the two mixtures is minimized.

The authors use a closed-form expression to calculate the distance between the Gaussian

mixtures efficiently. The underlying deformation is modeled using TPS. Both approaches are

reported to be robust against high occlusions, however, they are inefficient for large point

sets, due to their computational cost.
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Area-based methods

In this section, we will continue the review with the area-based (or iconic) methods. Herein,

the main aim is to establish a dense spatial connection between the input images by mak-

ing use of the whole domains, while maximizing a similarity or minimizing a dissimilarity

criterion [2, 4]. One of the main problems in this area is how to choose the similarity

criterion with respect to the application. A good criterion assigns higher similarity values

when we are comparing the same points of the scenes, which is particularly difficult in the

presence of higher radiometric distortions (e.g. multi-modal image registration). Most of the

classical methods are built upon cross-correlation (CC) or its modifications, while the mutual

information (MI) based techniques are dominating for multi-modal registration [2, 4].

One of the most commonly used methods for deformable registration of medical images

is the Demon’s Algorithm [12, 48–50]. The original method is inspired by Maxwell’s Demons

and it is used to solve the registration problem as a diffusion process [48]. In this approach,

the deformation field is approximated point-wise and optimized with respect to a similarity

criterion. The solution is obtained via iteratively updating the deformation by searching for

better correspondences near the current solution.

In [49], the authors proposed a Gradient Descent based interpretation of the Demon’s

Algorithm for registering deformable 3D medical images. They express the original method

as an approximation of a second order gradient descent on the SSD of the intensity values.

Although the experiments confirmed that the method gives fast and accurate results, the

authors noted the importance of the proper regularization and the drawbacks of the SSD

criteria in the case of higher radiometric distortion or multi-modal registration [49].

The main problem with the original Demon’s Algorithm is that the search for a better

solution is limited to a small area around the current result, therefore the optimization could

stuck in a local optimum. In [12], Lombaert et al. extend the Demon’s Algorithm to handle

large scale non-rigid deformations. This approach aims to establish global correspondences

between the images by making use of simple nearest neighbor searches. This so-called Direct

Feature Matching is working on densely extracted spectral features based on the eigenvectors

of the graph Laplacian of each image, enforcing an intrinsic geometric consistency in the

technique [12].

Another volumetric approach has been proposed by Glocker et al., where the registration

problem has been formulated as a discrete multi-labelling problem by employing Markov

Random Fields (MRFs) [51, 52]. MRF is a popular graph-based model for representing such

problems giving tools to describe the behavior of the input entities and the labels. In most

cases, the model has unary (also called singleton), pairwise (or doubleton) and higher order

potentials giving the relationship between one, two or more entities, respectively. In [53],

the deformation field is approximated by a free-form deformation (FFD) model based on

cubic B-Splines. The FFD is defined by a grid of control points and the algorithm aims to find

a discrete displacement vector of the grid with respect to an energy function. This function

is composed of an application specific similarity measure and a smoothness term. These type

of approaches are often referred as discrete techniques by the literature, while the methods

related to the Demon’s Algorithm are called continuous techniques [11].

As we mentioned earlier, one of the main challenges in area based methods is how to deal

with occlusion or disocclusions. While there are particular applications where occlusions are

not present like industrial inspection or many problems of medical image processing, it is

very common when working with images taken in less controlled environments (e.g. images
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obtained from unknown sources). Within the area based approaches, the issue is often

addressed as a segmentation problem, thus it is recommended to be handled accordingly

in the segmentation phase [7]. Based on the same assumption, another common way is

formalizing the problem as a simultaneous segmentation–registration process and handle

both the alignment and the occlusion handling within the same framework [54–56]. For

example, in [54] the authors proposed an active contour based approach, where the aim is

to segment the curves of an object on the source and the target images. However, unlike

to the traditional active contour approaches, the contours are assumed to be related by an

unknown parametric transformation, thus the curve evolution is coupled with the parameter

estimation. Another interesting MRF-based approach has been proposed in [56].

A related, well-studied problem is template matching, where the goal is to localize a

small patch in a much larger observation image. This could be considered as solving the

registration problem in the presence of extreme occlusions [57, 58]. In [58] an efficient

template matching algorithm has been proposed to handle arbitrary 2D affine transforma-

tions. It finds the best solution with respect to the sum of absolute differences (SAD) metric

between the image intensities. The space of possible transformations are sampled according

to the smoothness of the images and for each possible transformation, the SAD metric is

approximated in a small number of random points (this type of algorithm is referred as

sublinear by the literature) [58].

2.1.2 Deformable Registration of Triangular Surface Meshes

Unlike to the 2D cases, in 3D cases we have several types of input representation, therefore

the range of applicable methods is much wider. Today, the three main object representations

used mainly in the literature are volumetric (voxel) images, unstructured point sets and

triangular surface meshes [21]. Most of the already addressed methods are capable of

handling volumetric images or unstructured point sets. Now, let us focus on registering

triangular surfaces.

Triangular surface meshes are the most used general 3D surface representations. The

main advantage over point sets is that each triangle defines a piecewise planar region be-

tween the neighboring points. With this representation, we can consider the input as vol-

umetric objects enclosed by surface meshes (i.e. objects with non-zero volumes) and also

surface like objects defined as a set of triangles (e.g. a 3D face scan). In this work, we will

refer to the triangular surfaces of volumetric objects as closed surfaces and the non-closed

ones as open surfaces. The closed surfaces given by a more strict topological structure with-

out surface holes or missing triangles. Moreover, the objects must have consistently oriented

triangles, thus they separate the 3D space into interior and exterior spaces giving infinitely

many additional points. Triangular surface meshes are typically produced by stereo recon-

struction methods [59, 60], range imaging [61] or by laser scanner devices [62], but they

can be easily extracted from voxel images [63] as well. In most cases, triangular surfaces

contain spatial information only, but it is possible to involve textural information as well.

Triangular surfaces can be registered by either using the vertices of the meshes only, by

applying any point set registration approach [5, 6, 41] to them. Another way is to utilize the

structure information of triangles as well [37, 64, 65]. Modeling the deformation is done

similarly to the previous cases by using interpolating splines or element-wise (vertices or

faces) correspondences.

Graph matching [64, 66, 67] is a popular tool for encoding structural constraints to
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the registration approaches, moreover the fundamental structure of triangular surfaces also

implying the applicability of these methods. The idea behind these algorithms are related

to the Markov Random Field approaches by modeling the problem as weighted sums of

interaction functions, but there is a major difference in the interpretation of the energy

function. While MRF methods are built upon tools from the probability theory, the graph-

based approaches work with general interaction functions and the optimal solution is usually

found by simple algorithms from combinatorial optimization.

A graph matching method has been proposed in [64] to achieve dense, vertex-wise corre-

spondences between the input meshes. The constructed graph model is built upon the space

of all pair of vertex correspondences, assuming that the unary potential based on one pair,

the higher order potentials based on three pairs, yielding triangle-wise correspondences. The

unary potential is constructed using the differences between the Gaussian curvatures and tex-

ture information of each pair of vertices. The higher order potentials are given as a sum of a

Möbius transform and a Gaussian map based function. The algorithm determines correspon-

dences in two stages. During the first stage, the method estimates a sparse correspondence

between the input meshes, then using this result as an input, a dense correspondence is

extracted.

A similar approach based on the MRF model has been presented in [65]. The singleton

potentials are modeled as differences between extracted local features and the higher order

potentials defined as constraints on the deformation using a novel model called Canonical

Distortion Coefficient (CDC). The CDC describes the deformations for each pair of triangles

as distortions along the two principal directions in a canonical parametrization domain. The

potential function gives low values if the CDC of each examined triangle pair is coming from

the range of possible deformations (given as prior information to the algorithm).

Finally, there are several recent surface matching algorithms coming from spectral shape

analysis field. The main goal of these approaches is to define an intrinsic surface represen-

tation that is invariant to the non-rigid motion [22, 24, 68–71]. Using these models, the

surfaces are embedded into a new feature space, where due to the invariance the solution of

the correspondence problem becomes much easier to solve. These methods can deal with a

large scope of deformations, e.g. articulated motion of people or animals.

2.2 Camera Network Calibration

Camera calibration is one of the fundamental problems in computer vision [72]. Herein, the

main goal is to reconstruct the image acquisition function and it is an important preparatory

step in several applications like visual odometry [73] and 3D reconstruction [72]. While

in a real application many optical settings are available, in the following we will focus on

the simple pinhole camera model. This model describes a central projection of 3D points of

the scene onto the image plane of the camera. Let us assume that the points of the scene

and the image plane are embedded into the corresponding projective spaces, P3 and P
2,

respectively. This can be easily achieved by representing each point as a homogeneous vector.

Then, a point X̄ = [X1, X2, X3, 1]
T ∈ P

3 from the scene and its projection on the image

plane x̄ = [x1, x2, w]
T ∈ P

2 related by a linear mapping:

x̄ = PX̄, (2.1)
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where P is a 3 × 4 homogeneous camera projection matrix [72]. While the problem is

linear between the projective coordinates of the points, the non-linearity is introduced by

the homogeneous division, which is applied to convert the coordinates back to the Euclidean

plane:

x̄ 7→ [x1/w, x2/w]
T . (2.2)

In general, P is composed of the product of two matrices:

P = K [R | Rt] , (2.3)

where

K =







α1 s c1

α2 c2

1






(2.4)

corresponds to the intrinsic parameters and R ∈ R
3×3 orthonormal matrix and t ∈ R

3 trans-

lation vector are the extrinsic parameters or the pose of the camera. The intrinsic parameters

contain camera specific properties, like the focal length and the physical size of the pixels.

The pose corresponds to the camera location and orientation in the world coordinate system.

The aim of calibration process is to estimate camera parameters. This could mean recon-

struction of the whole P matrix [72, 74] or estimate either intrinsic or extrinsic parameters

alone. The former case is often referred as auto- or self-calibration by the literature [75,

76], while the latter case as camera pose estimation [77, 78]. The parameters are usually

estimated from multiple images taken by the same camera. For this, first we extract several

point correspondences, then fit a transformation model. However, if none of 3D coordinates

of the extracted points are available, the world coordinate system can only be reconstructed

up to a similarity transformation [72].

In camera network calibration our aim is to recover the parameters of N (probably

different) cameras. In this setting, the image of the point X̄ in the ith camera could be

described as

x̄i = PiX̄, (2.5)

where x̄i denotes the projection of X̄, Pi = Ki[Ri | Riti] and i = 1, . . . , N . Since in the

current work we are dealing with special mobile cameras having fixed focal lengths, we can

assume that the intrinsic parameters are precalculated and the possible radial distortions are

eliminated from the images.

When the intrinsic parameters are available, we can obtain the normalized coordinates of

x̄ as

x̂ = K−1x̄. (2.6)

This point can be considered as a special projection created using the so-called normalized

camera matrix [72]:

P̂ = K−1P = [R | Rt] , (2.7)

as

x̂ = P̂X̄ = [R | Rt] X̄. (2.8)

The first step in calibrating a camera network is to determine which images share any

common regions or parts. Using this information we can eliminate the independent cameras

from the process and decompose the network to smaller subnetworks to work with. The
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most frequent tool to handle such structures is the visibility or vision graph [79–81]. Let

V = (V,E) (2.9)

be an undirected graph where V and E ⊂ V × V denote the vertices and the edges, respec-

tively, and |V | = N , thus each element of V corresponds to a camera of the network. The

edge set is generated as follows, if any pair of Pi and Pj cameras have a reasonable amount of

common areas in their images, then let (vi, vj) ∈ E, where vi, vj ∈ V are the corresponding

nodes in V for Pi and Pj , respectively. The vision graph can be obtained using sensor infor-

mation [81] and by matching extracted features as described in Section 2.1.1 [79–81]. A

similar structure called skeletal graph have been proposed by [82], which encodes geometric

information as well.

Assuming a V = (V,E) vision graph is available, let us continue with the estimation

of the relative pose of the network. Most of the current approaches use 3D information

for estimating the relative poses, therefore the 3D points might be available initially or

determined simultaneously [73]. In the former approaches, the relative pose is extracted

using 3D-2D point correspondences by solving the Perspective-n-point problem [73, 83, 84],

where n denotes the number of point correspondences available. The minimal amount of

correspondences needed for this method is three, therefore the fast and exact solution of the

P3P problem is particularly interesting. Usually, it is used within the RANSAC framework to

be robust against outliers [35].

The latter approaches are often referred as structure from motion methods by the litera-

ture [72, 77, 85]. Herein, the parameter estimation usually built up from the following three

steps [77]:

1. Estimate the relative poses between pairs or triplets of cameras.

2. Register the extracted camera poses into a common coordinate system.

3. Apply a global non-linear optimization procedure to enhance the precision of the es-

timated results (e.g. the bundle adjustment algorithm to minimize the reprojection

error [86, 87]).

In the following, we will review some methods published for solving these three problems.

2.2.1 Relative Pose Estimation

There are several applicable methods for solving the first problem surveyed by numerous pa-

pers [88, 89]. The aim is to determine the relative pose from each camera to its neighbors in

the vision graph. In practice, this is usually handled by extracting the so-called fundamental

matrix or when the intrinsic parameters are available the essential matrix. Both these matri-

ces are rank 2 homogeneous matrices, which describes the epipolar geometry between the

corresponding pairs of cameras [72]. The fundamental matrix, acting between the images of

cameras Pi and Pj , maps each point x̄i on the first image to a line (called epipolar line) on

the second image ensuring that the corresponding x̄j projection will be on the line. Formally,

assuming that x̄i ↔ x̄j is a pair of corresponding points and Fij ∈ R
3×3 is a fundamental

matrix between the cameras Pi and Pj , the following holds [72]:

x̄jTFij x̄
i = 0. (2.10)
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The essential matrix Eij ∈ R
3×3 acts similarly between the normalized coordinates of the

projections, therefore it can be expressed as [72]

Eij = KT
j FijKi. (2.11)

The fundamental matrix is estimated using at least 7 point correspondences, but this

approach could result in one or three solutions [72]. Therefore, it is often replaced by the

normalized 8 point algorithm, which eliminates the ambiguities at the sake of an additional

point correspondence. Both of these approaches can be applied to estimate the essential

matrix too, by normalizing the point correspondences with the intrinsic parameters. In prac-

tice, however, a version of the 5 point algorithm is applied [78] to reduce the necessary

amount of correspondences. Similarly to the 7 point algorithm, there will be more than

one solutions, e.g. the algorithm published in [78] could return 4.55 solutions on average.1

The disambiguation is based on cheirality tests (i.e. how many points lie in front of the cam-

eras) [90, 91] and the comparison of the first order geometric error (or Sampson-distance) of

the solutions [89]. In practice, as we described in the previous section, the point correspon-

dences could be challenged with false matches and other types of noise, which have a strong

influence on the outcome. Therefore, the correspondences are usually pre-filtered using the

RANSAC algorithm [35] as discussed in Section 2.1.1, and the essential matrix is obtained

by solving an overdetermined system constructed using the filtered correspondences.

Another advantage of the essential matrix against the fundamental matrix is since it is

free from the intrinsic parameters the relative pose can be easily extracted from it [72]. First,

we assume that P̂i = [I | 0], then we are looking for P̂j = [Rj | Rjtj ], i.e. the relative pose of

camera j with respect to camera i. While the extraction is straightforward [72], it results in

four possible solutions and a scale ambiguity which affects the length of tj . Fortunately, the

correct solution can be easily chosen from the four candidates by observing which setting has

the most points in front of both cameras [72]. The scale ambiguity is handled by normalizing

the length of tj to be 1. This works perfectly for a stereo setting containing two cameras

only, but it has to be made consistent within a camera network.

2.2.2 Register the Cameras into a Common Frame

In the next problem, we have to register the extracted relative poses into a common world

coordinate system. In order to do this, we have to assign a global origin with the principal

axes to the system and make the relative positions consistent inside the network. In most

approaches the origin is attached to an arbitrary main camera [72]. Without the loss of

generality, let us assume that P1 is the main camera of the system, therefore P̂1 = [I | 0].

Achieving scale consistency within the network is a more challenging task [77]. The

main goal in this step is to estimate a scale factor for each camera to express the length of

its relative translation vector in the world coordinate frame. Formally, we are looking for a

λi value, which transforms the camera parameters in the following way:

P̂i = [Ri | λiRiti]. (2.12)

Conventional approaches register the cameras incrementally, by first adding the neighbors

of the main camera to the frame, then iteratively growing the network by considering the

1According to [78] the problem has at most 10 solutions including the complex ones too.
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neighbors of the cameras already in the network [73, 77, 92, 93]. Note that, for cameras

which are not connected to the main camera in the vision graph the relative pose have to

be adjusted as well. The λi values estimated using a set of 3D points reconstructed via

triangulation [72]. Theoretically, the availability of one [77] or two [73] points are enough

to estimate the scales, in practice the estimation is made from much more points, thus the

final solution will be an aggregated value (e.g. by taking the median of the estimated values).

The main idea behind these scale estimation processes is that if the scales are inconsistent

between two pairs of cameras, the same set of corresponding points will have very different

reconstructed 3D coordinates as well. Then, let us assume that Pi and Pj are already in a

consistent system and we would like to add a new Pk camera by estimating λk. Moreover,

we assume that there are at least one or two corresponding points (and hence we use the

one or two point algorithms, respectively), which are visible from all of these three cameras.

The one point algorithm first reconstructs a 3D point using Pi and Pj , then using Pi and

Pk. Since Pk is inconsistent with the camera network the firstly reconstructed X̄ij will be

different to the secondly obtained X̄ik. The λk ratio is then obtained as

λk =
‖X̄ij −Riti‖

‖X̄ik −Riti‖
, (2.13)

i.e. the ratio of distances between the reconstructed points and the common camera Pi [77].

The two point algorithm, works similarly, but it uses the ratios of distances between a pair

of reconstructed 3D points [73]:

λk =
‖X̄ij

1 − X̄
ij
2 ‖

‖X̄ik
1 − X̄ik

2 ‖
. (2.14)

Another type of common algorithms is the factorization based methods [85, 94]. Herein,

camera poses, 3D coordinates and scale factors are obtained simultaneously via matrix factor-

ization techniques. While these techniques introduce compact frameworks for the estimation,

they are inherently affected by missing data and outlier handling issues. These problems

have been addressed in a recent work [95], by formalizing the factorization problem using

an Augmented Lagrangian numerical scheme.

Finally, there are methods for estimating all of the camera poses together in two steps,

the so-called global methods [77]. These methods first extract the absolute rotations, then

estimate the translations. In [77], the camera centers obtained via a solution of a linear

system, which does not involve any 3D reconstruction at all. However, the method does

not work when the camera centers are collinear, for such cases the algorithm falls back to a

previously mentioned one point scale estimation method [77].

2.2.3 Bundle Adjustment

In the last step of a typical structure from motion pipeline, the estimated relative poses and

the reconstructed 3D information are optimized [80, 93, 96]. This process is called bundle

adjustment (BA) [86, 87] and it aims to minimize the reprojection error of the 3D points

by adjusting all of the estimated camera parameters (extrinsic and/or intrinsic) and the 3D

coordinates.

Observing bundle adjustment as a numerical method, it corresponds to a large-scale

nonlinear least-squares problem [86, 87]. However, due to a large number of parameters

involved in the process, the general purpose algorithms are not efficient in solving the
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problem [87]. Fortunately, the interactions between parameters are limited, therefore the

corresponding the Jacobian matrix will be sparse [87], which could be used to construct an

optimal solver.





Chapter 3

Deformable Registration of 3D

Objects

In this chapter, we will continue with one of the main topics of the current work and propose

a general framework to solve the non-linear registration problem between three-dimensional

(3D) objects. As we already mentioned in the previous chapters, with the spread of modern

3D content acquisition devices, also the need for registering objects coming from various

sources is increasing. In the following, we will focus on surface alignment, where the effect

of the physical deformation is only measurable on the surface of the objects. Since the

proposed approach relies on geometrical information only, we are dealing with a true binary

registration problem here. The proposed framework is rooted in a successful 2D approach

presented in [7], however, the extension to 3D is not straightforward: there are various 3D

specific details, which should be handled differently.

The current work aims to investigate the practical usefulness of various data representa-

tion available in 3D. As an example, state of the art methods of the topic do not distinguish

between open and closed surfaces. In this work, we will show that each representation

could lead to very different approaches in the proposed framework, having its own ad-

vantages and limitations. The general framework is able to work with voxel representa-

tion [Sánta and Kato, 2012a][Sánta and Kato, 2012b] and with open and closed triangular

surfaces [Sánta and Kato, 2018][Sánta and Kato, 2016a][Sánta and Kato, 2013a]. Possible

practical applications will be also investigated, like lung surface and face alignment.

3.1 Problem Statement

Let us formulate now the alignment problem: Given a pair of template and observation

objects denoted by Ft ⊂ R
3 and Fo ⊂ R

3, respectively, we are looking for the aligning

transformation ϕ such that for all x ∈ Ft there exists a y ∈ Fo satisfying the so-called

identity relation [Sánta and Kato, 2018][Sánta and Kato, 2013a]

ϕ(x) = y (3.1)

In classical landmark-based approaches, a large number of corresponding landmarks ex-

tracted from Ft and Fo, giving sufficiently many constraints through Equation (3.1) to find

the parameters of the transformation. What can we do if such point correspondences are not

17
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available? Let us integrate out individual point pairs in Equation (3.1) over the foreground do-

mains of the objects yielding the following equation [Sánta and Kato, 2018][Sánta and Kato,

2013a]:
∫

Fo

y dy =

∫

ϕ(Ft)

z dz. (3.2)

One can consider Equation (3.2) as an object level identity relation, because here we only

require, that the object domains Ft and Fo are in correspondence as a whole. While in

landmark-based approaches each point correspondence will generate a new equation of

the form Equation (3.1); Equation (3.2) provides only a very limited number of equa-

tions (exactly three for R
3)! As a consequence, Equation (3.2) alone will not provide

sufficiently many equations to solve for the transformation parameters. In order to gen-

erate more equations, observe that Equation (3.1) (hence Equation (3.2)) remains valid

when a non-linear ω : R3 → R function is acting on both sides [7]. Thus adopting a set of

independent non-linear functions {ωi}
ℓ
i=1 yields a system of ℓ equations [Sánta and Kato,

2018][Sánta and Kato, 2013a]:

∫

Fo

ωi(y) dy =

∫

ϕ(Ft)

ωi(z) dz i = 1, . . . , ℓ. (3.3)

The parameters of ϕ estimated directly as a solution of the system of equations. This implies

that we will need ℓ to be at least N , where N is the number of parameters of ϕ. In practice,

however, the input objects are usually subject to various types of noise, therefore an overde-

termined system is recommended, thus ℓ ≥ N . This system is solved in the least squares

sense with an arbitrary iterative optimizer. Now let us continue with observing the behavior

of the proposed formalism on different types of input objects.

When we are dealing with objects in the 3D Euclidean space, practically, the possible do-

mains are either surfaces or volumetric objects. Therefore, we will formalize our framework

to handle these two types of domains.

Now, let us assume that the object domains Ft and Fo are surfaces, thus Equation (3.3) in-

volves surface integrals over these domains [Sánta and Kato, 2018][Sánta and Kato, 2016a].

To get an explicit formula for these integrals, let us consider that the surface patches Ft,

ϕ(Ft) and Fo are parameterized over the 2D domains St ⊂ R
2, Sϕ ⊂ R

2 and So ⊂ R
2 via

rt : St → Ft,

rϕ : Sϕ → ϕ(Ft),

ro : So → Fo,

functions, respectively. Using these vector functions, the surfaces can be parametrized in a

2D space

∀x ∈ Ft : x = rt(w),w ∈ St

∀z ∈ ϕ(Ft) : z = rϕ(u),u ∈ Sϕ

∀y ∈ Fo : y = ro(v),v ∈ So,
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yielding the following form of the integral equation in Equation (3.3)

∫

Fo

ωi(y) dy =

∫∫

So

ωi(ro(v))

∥

∥

∥

∥

∂ro
∂v1

×
∂ro
∂v2

∥

∥

∥

∥

dv, (3.4)

∫

ϕ(Ft)

ωi(z) dz =

∫∫

Sϕ

ωi(rϕ(u))

∥

∥

∥

∥

∂rϕ
∂u1

×
∂rϕ
∂u2

∥

∥

∥

∥

du, (3.5)

where on the right-hand sides each vector function is multiplied by the surface element,

i.e. the magnitude of the cross product of the embedding functions’ partial derivatives.

The computational complexity of the proposed method is largely determined by the

calculation of the integrals in Equation (3.5): The integral over So from Equation (3.4) is

constant which needs to be computed only once. However, since the unknown transformation

ϕ is involved in the integrals of Equation (3.5), this formalism needs to generate the ϕ(Ft)

domain at each iteration of the least squares solver, which might be ineffective in a practical

application. In such cases, Equation (3.5) could be rewritten as

∫

ϕ(Ft)

ωi(z) dz =

∫∫

St

ωi(ϕ(rt(u)))

∥

∥

∥

∥

∂(ϕ ◦ rt)

∂u1
×

∂(ϕ ◦ rt)

∂u2

∥

∥

∥

∥

du, (3.6)

by making use of the integral transformation. Herein, rt(u) is constant, hence it can be

precomputed, although the computation of the surface elements becomes more complex.

First, let us rewrite the derivatives of the composite function ϕ ◦ rt in terms of the Jacobian

Jϕ of ϕ and the gradients of rt:

∥

∥

∥

∥

∂(ϕ ◦ rt)

∂u1
×

∂(ϕ ◦ rt)

∂u2

∥

∥

∥

∥

=

∥

∥

∥

∥

Jϕ(rt(u))
∂rt
∂u1

× Jϕ(rt(u))
∂rt
∂u2

∥

∥

∥

∥

. (3.7)

Since the gradients of rt are independent of ϕ, they can also be precomputed and used in

the above formula. Consequently, only ϕ(rt(u)) and Jϕ(rt(u)) have to be calculated during

the iterations.

When the input objects Fo and Ft have non-vanishing volumes, the integrals in Equa-

tion (3.3) can also be interpreted as volume integrals [Sánta and Kato, 2013a][Sánta and Kato,

2012a]. From a practical point of view, it is easy to see that such an interpretation yields

numerically more stable algorithm: any error in the surfaces Fo and Ft will inherently cause

an error in the integrals and hence the equality in Equation (3.3) will not be true anymore.

The smaller these errors are, the better we approximation we get for the true equality and

hence we can expect a better performance of the algorithm.

Handling the equations from Equation (3.3) as volumetric integrals leads to a much

simpler derivation than the one we obtained for the surface integration case, because the

estimation does not involve any further parametrization of the objects here. Although, the for-

malism is simpler, the volumetric objects could contain much larger amount of points than the

surface objects. Hence the generation of the integration domains could be much less effective

when we use the formulas from Equation (3.3). Similarly to the surface integration case, we

can handle the problem by using the corresponding integral transformation [Sánta and Kato,

2012a]:
∫

Fo

ωi(y) dy =

∫

Ft

ωi(ϕ(x))|Jϕ(x)| dx, i = 1, . . . , ℓ. (3.8)

While theoretically, we can use the integral transformation for both integration approach-

es, in practice we choose the most effective formalism. Note that, mathematically the
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formalisms are equal, thus the difference is in the computational complexity. Choosing

the best formalism depends on many factors. On one hand, for the formula described

in Equation (3.3), we have to generate the whole domains in each iteration, which could

increase the complexity depending on the input representation. On the other hand, the

formula from Equation (3.8) involves the Jacobian of the transformation. For linear or

piece-wise linear transformations the Jacobian will be constant, therefore its computation

is independent from the input size. For a general non-rigid transformation, the Jacobian

could be different at each point of the input domain and it needs to be recalculated for each

iteration. Although, in practice, the exact formulas are available for possible parametric

transformations, thus it can be estimated efficiently.

Besides the mentioned components, choosing the right {ωi} set is also an important issue.

In the current framework, the ωi should be chosen to ensure that the obtained equations

are independent and covariant with respect to the pursued transformation and the whole set

is rich enough to describe the effect of the deformation. This issue has been addressed by

several preceding works [7, 97]. Generally speaking, in methods built on linear systems, it is

particularly important to choose the right function set for the right outcome [97]. However,

for non-linear systems, it has a minor influence on the solution [7]. Although using different

{ωi} sets could lead to very different, even inferior solutions; Domokos et al. have shown

that this issue is rather a numeric than a conceptual problem [7]. Therefore, it could be

handled easily by normalizing the system with properly generated, function set dependent

constants [7].

For the matter of computational efficiency, it is a good practice to choose the functions

to be as simple as possible. Therefore, in the current work, we use simple power functions in

the form of

ωi(x) = xmi

1 xni

2 xoi
3 mi, ni, oi ≥ 0, (3.9)

where i = 1, . . . , ℓ.

Now, let us elaborate the review from Section 2.1 by observing the relationship between

the proposed approaches and the literature. The proposed framework is related to the surface

registration approaches [21, 98], because the effect of the transformation can be measured

on the surface only. However, there are some differences in handling of the input data, which

needs further investigations.

For any surface registration method, one of the main challenges is how to handle noise,

which usually caused by perturbations of vertices or by errors in the segmentation [21].

Since the input domain of these algorithms is restricted to the surface, this could lead to

an inefficiently small signal-to-noise ratio. This observation will be valid for our surface

integration based approach as well, since any amount of noise on each vertex will challenge

drastically the surfaces from Equations (3.4)–(3.5) too. However, the surface noise has much

lower impact on the volumetric approach, by the reason of the error is distributed on a much

larger volumetric domain in Equation (3.3). This also yields that the volumetric approach

will be more stable numerically than the surface-based approach.
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3.2 Modeling the Deformation

3.2.1 Polynomial Model

A broadly used class of deformations is the polynomial family. In the three-dimensional case,

the deformation field π : R3 → R
3, π(x) = [π1(x), π2(x), π3(x)] is given by three polynomial

functions πi : R
3 → R [Sánta and Kato, 2012b]. Without loss of generality, we can assume

that d = deg(π1) = deg(π2) = deg(π3):

π1(x) =
d
∑

i=0

d−i
∑

j=0

d−i−j
∑

k=0

aijkx
i
1x

j
2x

k
3 ,

π2(x) =

d
∑

i=0

d−i
∑

j=0

d−i−j
∑

k=0

bijkx
i
1x

j
2x

k
3 , (3.10)

π3(x) =

d
∑

i=0

d−i
∑

j=0

d−i−j
∑

k=0

cijkx
i
1x

j
2x

k
3 .

The transformation has a total of N = (d + 3)(d + 2)(d + 1)/2 parameters. The Jacobian

determinant of the transformation composed of the following partial derivatives:

∂π1

∂x1
=

d
∑

i=1

d−i
∑

j=0

d−i−j
∑

k=0

iaijkx
i−1
1 xj

2x
k
3 , (3.11)

∂π1

∂x2
=

d
∑

j=1

d−j
∑

i=0

d−i−j
∑

k=0

jaijkx
i
1x

j−1
2 xk

3 , (3.12)

∂π1

∂x3
=

d
∑

k=1

d−k
∑

i=0

d−i−k
∑

j=0

kaijkx
i
1x

j
2x

k−1
3 , (3.13)

and for π2 and π3, we get a similar formula.

The main advantage of polynomial deformations over the spline based models is the

fewer number parameters and the fact that polynomials are acting globally on the shapes,

hence regularization is not needed. Moreover, many non-polynomial transformations can be

approximated by a polynomial one e.g. via a Taylor expansion [7]. The proposed framework

also benefits from using polynomial transformations with volumetric images which will be

elaborated in Section 3.3.1.

3.2.2 Thin Plate Splines

Thin Plate Splines (TPS) [33, 34, 99] transformation is commonly used as a parametric

model for elastic deformations. In 3D, a TPS transformation ς : R3 → R
3 can be decomposed

as three coordinate functions ς(x) = [ς1(x), ς2(x), ς3(x)]
T , ∀ςi(x) : R3 → R. Given a set of

control points ck ∈ R
3 and associated mapping coefficients aij , wki ∈ R with i = 1, . . . , 3, j =

1, . . . , 4 and k = 1, . . . ,K, the TPS functions are

ςi(x) = ai1x1 + ai2x2 + ai3x3 + ai4 +

K
∑

k=1

wkiU(‖ck − x‖), (3.14)

where U(r) is called radial basis function. The number of parameters N = 3(K + 4), consist-

ing of 12 affine parameters aij and 3 local coefficients wki for each of the K control points
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ck. Note that, in 3D the radial basis function has the following form: U(r) = −r [99].1 The

elements of the Jacobian matrix of ς are obtained as:

∂ςi
∂xj

= aij −

K
∑

k=1

wki

ckj − xj

‖ck − x‖
i, j = 1, 2, 3. (3.15)

The local parameters are also required to satisfy the following additional constraints [34,

99], ensuring that the TPS at infinity behaves according to its affine term:

K
∑

k=1

wki = 0 and
K
∑

k=1

ckj
wki = 0 i, j = 1, 2, 3. (3.16)

The algebraical meaning of these constraints is to ensure that the wki parameters are coming

from the left null space of [1 | CP], a matrix containing the homogeneous coordinates of the

control points [5].

When correspondences are available, exact mappings of the control points are also known

which, using Equation (3.14), provides constraints on the unknown parameters. Thus in

classical correspondence based approaches, control points placed at extracted point matches,

and the deformation at other positions is interpolated by the TPS. Therefore in such cases,

a TPS can be regarded as an optimal interpolating function, whose parameters are usually

recovered via a complex optimization procedure [33, 34].

However, in the current approach, TPS is used in a quite unusual way, introduced by [7].

Herein, it is a parametric model to approximate the true deformation and the parame-

ters determined as the solution of Equation (3.3) [Sánta and Kato, 2018][Sánta and Kato,

2013a][Sánta and Kato, 2012a].

Considering registration as a model fitting problem, we can use the terms over- and un-

derfitting [21]. Herein underfitting refers to the case where the underlying deformation has

higher Degrees of Freedom (DoF) than the approximating transformation, while overfitting

occurs when the positions are reversed. In non-rigid registration, the overfitting problem is

particularly interesting when the input is challenged by noise and outliers since the trans-

formations with higher DoF could align the template to the outliers as well. Both issues are

affected by the positions of the control points and overfitting usually handled by applying

additional regularization constraints on the transformation.

Control Point Placement

Since the presented framework aims to find the globally best alignment, the control point

placement has major effect on the outcome. In the presence of prior knowledge about the

physical deformation or the image acquisition method, it is easier to find the right control

point positions or learn an application specific TPS transformation [100, 101].

In the current approach, we have examined two control point placement strategies with-

out the assumption of any prior knowledge. In the first approach, the control points have

been placed on a uniform grid in order to capture local deformations everywhere. Obvi-

ously, a finer grid would allow a more refined approximation of the deformation field at

the price of increased number of free parameters [Sánta and Kato, 2018][Sánta and Kato,

2013a][Sánta and Kato, 2012a]. In the second strategy, the control points were uniformly

1Following the work of [99], there is an additional constant term in the radial basis function, but in practice, it
is encoded into the local parameters.
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sampled on the template surface maximizing the geodesic distance between the closest points.

This method is also known as the Farthest Point Sampling [102]. Note that, this approach

places the control points on the surface only [Sánta and Kato, 2018][Sánta and Kato, 2016a].

Regularization

In some applications, using spatial information only does not provide enough constraints

on the transformation model, thus many equivalent solutions are available on the level of

objects. Moreover, in several scenarios, it is necessary to determine a smooth, diffeomorphic

solution. It is a well-known fact that thin plate splines may not be diffeomorphic without

further regularization [103–105], although several techniques can be found in the literature

on determining a diffeomorphic solution. For example, in the landmark based approaches an

energy function, composed of the derivatives of the displacement field, is minimized [103] or

a flow of diffeomorphisms is defined, then using its velocity field and a linear differential op-

erator the deformation energy is minimized to achieve a diffeomorphic transformation [104,

105].

In our approach we are looking for a solution which not only solves our system of equa-

tions but also minimizes the bending energy of the transformation:

Ebending = λ

∫

Ft

{

(

∂2ς

∂x2
1

)2

+

(

∂2ς

∂x2
2

)2

+

(

∂2ς

∂x2
3

)2

+

2

(

∂2ς

∂x1∂x2

)2

+ 2

(

∂2ς

∂x2∂x3

)2

+ 2

(

∂2ς

∂x3∂x1

)2
}

dx, (3.17)

where λ > 0 is an application dependent parameter.

In our experiments, using the bending energy minimization provided sufficient constraint

to obtain diffeomorphic solutions. This finding has been experimentally confirmed on syn-

thetic volumetric datasets by computing the Jacobian of the obtained transformations for all

of the input voxels: the values were positive in every case.

3.3 Efficient Computation of Integrals over 3D Objects

Object representation also has a strong influence on the nature of the underlying optimiza-

tion problem. As discussed in Section 2.1.2, the most common object representations are

unstructured point sets, voxel representation, and triangular surface meshes. In the current

work, we are dealing with the latter two representations. Since these representations are

only discrete approximations of the true objects, the integrals of the generated systems will

be only approximately valid too.

In the first subsection, we will focus on voxel images. Recall that, this representation

is mainly obtained via tomographic reconstruction and practical applications usually come

from medical fields. Unfortunately, the huge amount of data leads to higher computational

complexity, but using polynomial equations the voxel coordinates could be separated from

the parameters. In practice, this means that we only have to iterate the coordinates once for

each pair of input objects.

In the subsequent sections, we will work with triangular surface meshes. A triangular

surface can be either open (non-closed) or closed. Open surfaces have zero volume, thus

they can be used with surface integration only. This approach is more general, hence it is
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not limited to watertight meshes (i.e. assuming strict topological properties like consistent

orientation and the mesh have to be free from surface holes), yet surface noise has bigger

influence on the accuracy. Closed surfaces, however, could be used with surface and volu-

metric integrals too. Opposed to the surface base method, the volumetric approach has very

good tolerance against the surface noise, but it relies on the topological properties described

above. Both of these approaches could be used with arbitrary transformation models and

{ωi} set, although in the current work we will focus on thin plate splines and power functions

from Equation (3.9).

3.3.1 Voxel Representation

In voxel representation, we assume that the input is defined as a set of identical volumetric

elements (or voxels) with 1 as volume. Let us denote the voxel approximation of the template

and the observation by Ft and Fo, respectively. Using the notations from Section 3.1:

Ft ≈ Ft and Fo ≈ Fo. (3.18)

Since voxels are volumetric objects, integration over these domains will lead to a volu-

metric integral, which can be estimated as a finite sum over the voxels [Sánta and Kato,

2012a][Sánta and Kato, 2012b]. Therefore, the sides of the equations from Equation (3.3)

will become

∑

Y∈Fo

ωi(Y) ≈

∫

Fo

ωi(y) dy, (3.19)

∑

Z∈ϕ(Ft)

ωi(Z) ≈

∫

ϕ(Ft)

ωi(z) dz, (3.20)

where i = 1, . . . , ℓ. However, the generation of ϕ(Ft) could be practically ineffective for

high resolution images, hence we will use the integral transformation equations from Equa-

tion (3.8) instead. The final form of the system using voxel representation will be

∑

Y∈Fo

ωi(Y) =
∑

X∈Ft

ωi(ϕ(X))|Jϕ(X)|, (3.21)

where i = 1, . . . , ℓ. Substituting Equation (3.9) into Equation (3.21) we get

∑

Y∈Fo

Y mi

1 Y ni

2 Y oi
3 =

∑

X∈Ft

ϕ1(X)miϕ2(X)niϕ3(X)oi |Jϕ(X)|, (3.22)

where i = 1, . . . , ℓ. The overall computational complexity is O(ℓI|Ft| + ℓ|Fo|), where I is

the number of evaluation made by the solver and |Ft| and |Fo| are the number of voxels

in the template and the observation, respectively. While this system could be used with

any parametric transformation model [Sánta and Kato, 2012a][Sánta and Kato, 2012b], an

efficient numerical scheme can be derived for models, where the product on the right-hand

side is polynomial [Sánta and Kato, 2012a]. An obvious candidate for such setting is the

general polynomial transformation from Equation (3.10).
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Computation of Polynomial Equations over Voxel Objects

Now let us investigate how to utilize polynomial equations within the proposed framework.

Consider the right-hand side of the ith equation from Equation (3.22) with polynomial

transformation from Equation (3.10):

∑

X∈Ft

π1(X)niπ2(X)miπ3(X)o1 |Jπ(X)|, i = 1, . . . , ℓ. (3.23)

Using such model, products of the powered transformation functions are polynomials too,

and so as the Jacobian determinant of the transformation Equation (3.13). Moreover, their

product will be also polynomial, with the degree of di = d(ni +mi + oi) + 3(d− 1),

∑

X∈Ft

π1(X)niπ2(X)miπ3(X)o1 |Jπ(X)| =
∑

X∈Ft

di
∑

q=0

di−q
∑

r=0

di−q−r
∑

s=0

giqrsX
q
1X

r
2X

s
3 , (3.24)

where i = 1, . . . , ℓ and d is the degree of the transformation polynomial. According

to the Multinomial theorem, gi is a polynomial of the parameters of the transforma-

tion [Sánta and Kato, 2012b]. Notice that, the gi functions are independent from the voxels.

Therefore, using the basic properties of integration, the sums can be rearranged as

∑

X∈Ft

π1(X)niπ2(X)miπ3(X)o1 |Jπ(X)| =

di
∑

q=0

di−q
∑

r=0

di−q−r
∑

s=0

giqrs
∑

X∈Ft

Xq
1X

r
2X

s
3 , (3.25)

Observe that the sum over the voxel coordinates is independent from the parameters of

the transformation functions. This means the integrals over the template coordinates are

independent from the unknown parameters, hence these integrals have to be computed only

once for the whole registration procedure.

Using these results, the integrals can be separated from the transformation parameters

which can reduce the computational time, but note that these modifications do not affect the

left-hand side of the equations [Sánta and Kato, 2012b].

Let us follow by observing the computational complexity of the polynomial scheme.

First, we will denote the number of terms in a three-dimensional full polynomial by γ(d) =

(d+3)(d+2)(d+1)/6, where d is the degree of the polynomial. Since the integrals from Equa-

tion (3.25) are independent from the parameters of the transformation model, we could

precalculate the sum over the coordinates for all ωi function in O(|Ft|γ(dM )) time, where

dM = max{di}, using a simple recursive calculation scheme.

Now, let us examine the giqrs functions. In the worst case, they are full polynomials

of the transformation parameters with a degree of ni + mi + oi + 1, which comes from

the degree of the power functions and from the Jacobian determinant. The number of

these functions for the ith equation is γ(di). Therefore the total number of operations are

O(γ(di)γ(ni+mi+oi+1)), if we assume that one term of qiqrs can be computed in constant

time.

The overall computation time with this modifications is

O(ℓ|Fo|+ γ(dM )|Ft|+ I

ℓ
∑

i=1

γ(di)γ(ni +mi + oi + 1)) (3.26)

where I is the number of the necessary function calls made by the least squares solver.



26 3. CHAPTER. DEFORMABLE REGISTRATION OF 3D OBJECTS

How does this complexity relate to the complexity of the general system from Equa-

tion (3.22)? For an example, consider the following case: we want to use a second order

polynomial deformation (i.e. d = 2) to approximate the underlying deformation field. To

solve that we need at least 30 ωi functions. Let us use the first 35 power functions with a

maximal degree of 3 from the following set:

{(ni,mi, oi)}
35
i=1 = {(a, b, c) | 0 ≤ a = 0, . . . , 2, b = 0, . . . , 2, c = 0, . . . , 3}. (3.27)

Using the formulas above we have

dM = 15,

γ(dM ) = 816,
35
∑

i=1

γ(di)γ(ni +mi + oi + 1) = 816832.

In our experiments, the average of the number of function calls was 377 for this model and ωi

set. Note, that the number of iterations is the same for both methods since the modifications

affect only the computational time of a single iteration. Hence, the computational complexity

of the optimized scheme will be

O(35|Fo|+ 816|Ft|+ 377 · 816, 832). (3.28)

The complexity of the naive computation scheme for Equation (3.22) is

O(35|Fo|+ 377(35 + 30 + 36)|Ft|), (3.29)

where the terms of the sum (35 + 30 + 36) correspond to the numbers of necessary steps for

calculating the ωi functions, transforming the voxel coordinates and estimating Jacobian of

the transformation, respectively. Comparing these two complexities leads to that it is worth

to use the modifications as long as

|Ft| ≥ 8, 265. (3.30)

3.3.2 Triangular Surface Mesh Representation

In the following, we will assume that the template and the observation surfaces are repre-

sented by their triangular surface meshes. Let us denote the meshes of the template and the

observation surfaces by T△ and O△ ⊂ R
3 × R

3 × R
3, respectively. Next, observe that the

transformation ϕ acting on the mesh T△ generates a new surface mesh by transforming the

vertices of the triangles:

ϕ(T△) = {(ϕ(A), ϕ(B), ϕ(C)) | (A,B,C) ∈ T△} . (3.31)

Since the transformed object can be estimated easily, herein we do not have to use the

integral transformation, thus we can work directly with Equation (3.3).
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Computing Surface Integrals over Triangular Meshes

Let us focus on the surface integration first, by building upon Equation (3.4) and Equa-

tion (3.5). Note that, triangular surface meshes give piecewise linear approximations of the

true surfaces only, hence

T△ ≈ Ft,

O△ ≈ Fo,

ϕ(T△) ≈ ϕ(Ft), (3.32)

and thus the integrals over the triangular surfaces will be approximations of the integrals over

the true surfaces as well. Using these notations, surface integrals over triangular surfaces

can be expressed as sums of integrals over the triangles of each mesh [Sánta and Kato,

2018][Sánta and Kato, 2016a]:

∫

O△

ωi(ŷ) dŷ =
∑

o∈O△

∫

o

ωi(ŷ) dŷ, (3.33)

∫

ϕ(T△)

ωi(ẑ) dẑ =
∑

π∈ϕ(T△)

∫

π

ωi(ẑ) dẑ, (3.34)

where i = 1, . . . , ℓ. The triangular mesh approximation also simplifies the parametrization of

the surfaces, since unlike the formalism described in Equations (3.4)–(3.5), not a complex

3D surface have to be parameterized, only the triangles of the approximate meshes.

Now, we will derive two different numerical schemes for the calculation of surface in-

tegrals. While the first approach aims to estimate the exact integrals over the triangular

surfaces, the second one uses a linear approximation of the ωi functions, giving only an

approximately valid solution [Sánta and Kato, 2018][Sánta and Kato, 2016a].

First, let us focus on the exact approach. Following [106], in order to obtain the integrals

analytically, we will use the barycentric parametrization of the triangles. Considering an

arbitrary triangle o = (A,B,C), every p point of the triangle can be expressed as weighted

sums of the vertices:

p = uA+ vB+ wC, (3.35)

with u, v, w ≥ 0 and u + v + w = 1. The w parameter could be given by using u and v as

w = 1− u− v, yielding only two free parameters. For giving the integrals in the barycentric

domain, we have to estimate the area changes induced by the parametrization too. Similarly

to Equation (3.5), the area term is given as the magnitude of the cross product of the partial

derivatives of the coordinate transformation w.r.t. u and v. Thus, using these notations we

get:

‖(A−C)× (B−C)‖ = 2area(o),

where area(o) corresponds to the area of the triangle o. Now, we can give the integral of

Equation (3.33) over a triangle in the barycentric domain as

∑

o∈O△

∫

o

ωi(ŷ) dŷ =
∑

o∈O△

2 area(o)

∫ 1

0

∫ 1−u

0

ωi(uA+ vB+ wC) dv du, (3.36)

where i = 1, . . . , ℓ and w = 1− u− v. A similar formula can be derived for Equation (3.34)

also [106].
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Let us use the {ωi} set from Equation (3.9) and define the exponents as

{(ni,mi, oi)}
ℓ
i=1 = {(a, b, c) | a+ b+ c = O}, (3.37)

where O ∈ {0, . . . , Omax}. Note that, using these ωi functions the integrands will be various

geometric moments of each triangle, which can be efficiently computed by making use of the

methods proposed in [106, 107].

Applying these {ωi} set to Equation (3.36), we get the following integrals over an arbi-

trary triangle o = (A,B,C):

∫

o

ŷmi

1 ŷni

2 ŷoi3 dŷ = 2area(o)

∫ 1

0

∫ 1−u

0

(uA1 + vB1 + wC1)
mi ×

(uA2 + vB2 + wC2)
ni ×

(uA3 + vB3 + wC3)
oi dv du,

(3.38)

where Ai, Bi and Ci (i = 1, 2, 3) are the corresponding coordinates of the A, B and C

vertices, respectively.

Now let us focus on the integrals on the right-hand side. After expanding the power

function and taking the vertex coordinates out of the integral, we get

Sminioi(A,B,C) =

∑

a1+a2+a3=mi

∑

b1+b2+b3=ni

∑

c1+c2+c3=oi

(a1, b1, c1)A
a1
1 Ab1

2 Ac1
3 ×

(a2, b2, c2)B
a2
1 Bb2

2 Bc2
3 ×

(a3, b3, c3)C
a3
1 Cb3

2 Cc3
3 ×

∫ 1

0

∫ 1−u

0

ua1+b1+c1va2+b2+c2wa3+b3+c3 dv du,

(3.39)

and since the last integral depends only on the exponents:

∫ 1

0

∫ 1−u

0

ua1+b1+c1va2+b2+c2wa3+b3+c3 dv du =

(a1 + b1 + c1)!(a2 + b2 + c2)!(a3 + b3 + c3)!

(mi + ni + oi + 2)!
. (3.40)

Substituting these formulas into Equation (3.39) and rearranging the summations leads to

Sminioi(A,B,C) =

mi!ni!oi!

(mi + ni + oi)!

∑

a1+a2+a3=mi

∑

b1+b2+b3=ni

∑

c1+c2+c3=oi

(a1, b1, c1)A
a1
1 Ab1

2 Ac1
3 ×

(a2, b2, c2)B
a2
1 Bb2

2 Bc2
3 ×

(a3, b3, c3)C
a3
1 Cb3

2 Cc3
3 ,

(3.41)
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where (a, b, c) : N3 → N is the trinomial coefficient defined as

(a, b, c) =
(a+ b+ c)!

a!b!c!
.

Summarizing the results from Equation (3.36) and Equation (3.41), the integral over a

triangle o can then be written as [107]

∫

o

ωi(ŷ) dŷ = 2area(o)Sminioi(A,B,C) (3.42)

and thus the system of equations from Equation (3.3) will become

∑

o=(A,B,C)∈O△

2 area (o)Sminioi(A,B,C) ≈

∑

π=(D,E,F)∈ϕ(T△)

2 area (π)Sminioi(D,E,F), (3.43)

where i = 1, . . . , ℓ.

The computational complexity of the ith integral would be O(M9
i ), where Mi is the

order of the ith power function given by Mi = ni +mi + oi. However, the summations in

Equation (3.41) can be rearranged to drastically reduce the complexity.

According to [106], let us define the following recursive formulas:

Cijk(A) = (i, j, k)Ai
1A

j
2A

k
3 , (3.44)

Dabc(A,B) =

a
∑

i=0

b
∑

j=0

c
∑

k=0

Cijk(A)Ca−i,b−j,c−k(B). (3.45)

Then Equation (3.41) can be rewritten as

Sminioi(A,B,C) =

mi
∑

a=0

ni
∑

b=0

oi
∑

c=0

Cabc(A)Dmi−a,ni−b,oi−c(B,C). (3.46)

As a result, the complexity reduces to O(M6
i ) [106]. A further reduction to O(M3

i ) can be

achieved by applying the results of [107] for rearranging Equation (3.44), Equation (3.45),

and Equation (3.46) as

Cijk(A) = A1Ci−1,j,k(A) +A2Ci,j−1,k(A) +A3Ci,j,k−1(A), (3.47)

Dijk(A,B) =



























0, if l < 0 for any l ∈ {i, j, k}

1, if l = 0 for all l ∈ {i, j, k}

A1Di−1,j,k(A,B) +A2Di,j−1,k(A,B)+

A3Di,j,k−1(A,B) + Cijk(B), otherwise

, (3.48)
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Sijk(A,B,C) =



























0, if l < 0 for some l ∈ {i, j, k}

1, if l = 0 for all l ∈ {i, j, k}

A1Si−1,j,k(A,B,C) +A2Si,j−1,k(A,B,C)+

A3Si,j,k−1(A,B,C) +Dijk(B,C), otherwise

. (3.49)

Since all of the above formulas are recursive, we can store the results of lower order

polynomials to compute the higher order ones. Hence the complexity of computing all of

the integrals for i = 1, . . . , ℓ over one triangular element will be O(M3), where M is the

maximal degree of polynomials from the {ωi}
ℓ
i=1 set.

Now, let us focus on the approximate calculation of the integrals [Sánta and Kato,

2018][Sánta and Kato, 2016a]. Using the barycentric parametrization from Equation (3.35)

we linearly interpolate the {ωi} functions using the vertices of each triangle o = (A,B,C)

as

ωi(p) ≈ uωi(A) + vωi(B) + wωi(C) i = 1, . . . , ℓ. (3.50)

From Equation (3.36) and Equation (3.50) we can derive the following

∑

o∈O△

∫

o

ωi(ŷ) dŷ ≈
∑

o∈O△

2 area(o)

∫ 1

0

∫ 1−u

0

uωi(A) + vωi(B) + wωi(C) dv du, (3.51)

where w = 1− u− v and i = 1, . . . , ℓ.

Observe that ωi does not depend on the integration variables in Equation (3.51), hence

the integrals can be evaluated

∫

o

ωi(ŷ) dŷ ≈ area(o)
ωi(A) + ωi(B) + ωi(C)

3
, (3.52)

which then becomes the mean of the function values in the vertices weighted by the area of

the triangle. Note that, this formula will be exact for every linear function. For non-linear

functions, the precision of approximation depends on the local linearity of the particular

function and the size of the triangles [Sánta and Kato, 2018][Sánta and Kato, 2016a].

This method is similar to zero-th order approximation introduced by [106], but that

method is approximating the Sminioi function, ending up in a different scheme.

The computational complexity of calculating the whole {ωi}
ℓ
i=1 set from Equation (3.9)

over one triangle is O(M3), where M is the maximal order the polynomials from the set.

Observe that, the complexity of the exact and the approximate schemes are equivalent

asymptotically. However, there is a difference between the necessary amount of constant

operations, which leads to faster algorithm in the approximate case [107].

Computing Volumetric Integrals over Closed Triangular Meshes

When the surfaces Fo and Ft are closed, the integrals in Equation (3.3) can also be inter-

preted as volume integrals, similarly to the voxel-based representation [Sánta and Kato,

2018][Sánta and Kato, 2013a]. From a practical point of view, it is easy to see that such

interpretation yields a numerically more stable algorithm: any error on the surfaces Fo and

Ft will inherently cause an error in the integrals and hence the equality in Equation (3.3)

will not be true anymore. The smaller these errors are, the better we approximate true

equality and hence we can expect a better performance of the algorithm. Furthermore, we
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have seen in the previous section that for our particular set of ωi functions, the integrals in

Equation (3.3) are the moments of Fo and Ft. Obviously, surface errors will not influence

the inner part of an object, hence the moments of complete volumes will be less affected.

Similarly to the previous section, let us assume that the template and the observation sur-

faces are approximated by T△ and O△ ⊂ R
3×R

3×R
3 triangular surface meshes, respectively.

Moreover, we will use the transformation described in Equation (3.31).

Following [Sánta and Kato, 2018][Sánta and Kato, 2013a], let us denote the volumes en-

closed by T△ and O△ by F△
t and F△

o , respectively. The volume enclosed by the transformed

surface ϕ(Ft) and transformed surface mesh ϕ(T△) is denoted by Dϕ and F△
ϕ , respectively.

Using these notations it is obvious that Ft ≈ F△
t and Fo ≈ F△

o . Using the corresponding

volumetric integrals, the integrals of Equation (3.2) can be approximated as

∫

F
△

o

ŷ dŷ ≈

∫

Fo

y dy, (3.53)
∫

F
△

ϕ

ẑ dẑ ≈

∫

Dϕ

z dz. (3.54)

Assuming that every triangle is oriented consistently counter-clockwise when seen from

the closest exterior point, the integrals on the right-hand sides of Equation (3.53) and

Equation (3.54) can be computed exactly as the sums of signed integrals over properly

generated tetrahedrons:

∫

F
△

o

ŷ dŷ =
∑

o∈O△

sgn(vol(To))

∫

To

ŷ dŷ, (3.55)

∫

F
△

ϕ

ẑ dẑ =
∑

π∈ϕ(T△)

sgn(vol(Tπ))

∫

Tπ

ẑ dẑ. (3.56)

The key point here is the creation of the tetrahedrons: For each triangle o = (A,B,C), let us

create a tetrahedron To = (A,B,C,0) defined by the vertices of the corresponding triangle

o and the origin 0. Thus for all triangle, we generate a tetrahedron with the fourth vertex

shared by all of these tetrahedrons (see Figure 3.1). Although the choice of the fourth vertex

is arbitrary, setting it to the origin will greatly simplify our computations and eventually, the

formalism will be similar to the exact integration approach described in Section 3.3.2. The

computation of the signed volume of such tetrahedron To is straightforward:

vol(To) =
1

6

∣

∣

∣

∣

∣

∣

∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣

∣

∣

∣

∣

∣

∣

, (3.57)

where A = (A1, A2, A3), B = (B1, B2, B3), C = (C1, C2, C3) ∈ R
3 are the vertices of

the corresponding triangle o. The sign is important because it describes the orientation of

triangles seen from the origin for non-convex shapes. For example in Figure 3.1, there is

a volumetric object given by its triangular surface mesh. The volumes of the tetrahedrons

generated by the two marked triangles have different signs, caused by the different vertex

order [Sánta and Kato, 2018][Sánta and Kato, 2013a].

Then from Equation (3.55) and Equation (3.56), we get the following approximation for
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(a) (b)

Figure 3.1: The difference between surface (a) and volumetric (b) integration over the
triangular surface mesh of a torus. In (a), the integrals are computed over each triangle, while
in (b) the integration domains are tetrahedrons composed of the triangles and an arbitrary
chosen common point. In the latter case, the orientation of the triangles is important, because
it defines the sign of the volume of the corresponding tetrahedrons. As an example, the blue
tetrahedron has positive, and the red has negative volume.

our basic equation Equation (3.2):

∑

o∈O△

sgn(vol(To))

∫

To

ŷ dŷ ≈
∑

π∈ϕ(T△)

sgn(vol(Tπ))

∫

Tπ

ẑ dẑ. (3.58)

Applying the {ωi}
ℓ
i=1 set from Equation (3.9), we get the following system of equations:

∑

o∈O△

sgn(vol(To))

∫

To

ŷmi

1 ŷni

2 ŷoi3 dy ≈
∑

π∈ϕ(T△)

sgn(vol(Tπ))

∫

Tπ

ẑmi

1 ẑni

2 ẑoi3 dz. (3.59)

Now, we will derive the exact computation formulas for calculating the integrals for one

tetrahedron. Similarly to the previous section, we will describe each point of a tetrahedron

in the barycentric coordinate system. Considering a tetrahedron To, defined by the triangle

o = (A,B,C), an arbitrary point p can be given as [106]

p = ρ(uA+ vB+ wC),

where u, v, w ≥ 0, u+ v+w = 1 and 0 ≤ ρ ≤ 1. Note that, w can be described using u and v

as w = 1− u− v. Due to the change of the variables, we have to compensate the change of

the volumes in each integral by multiplying the variables with the Jacobian determinant of

the coordinate transformation. Herein, the Jacobian will be J = 6|vol(To)|ρ
2 [106].

The integral over a tetrahedron To in the barycentric coordinate system then can be

written as [106]

∫

To

ŷmi

1 ŷni

2 ŷoi3 dŷ = 6|vol(To)|

∫ 1

0

ρMi+2

∫ 1

0

∫ 1−u

0

(uA1 + vB1 + wC1)
mi×

(uA2 + vB2 + wC2)
ni×

(uA3 + vB3 + wC3)
oi dv du dρ,

(3.60)

where Mi = ni +mi + oi and i = 1, . . . , ℓ. Since
∫ 1

0
ρn+2 dρ is independent of the rest of the

expression, thus it can be evaluated separately, resulting in
∫ 1

0
ρn+2 dρ = 1/(Mi + 3) [106].
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Hence, the integral will be

∫

To

ŷmi

1 ŷni

2 ŷoi3 dŷ =
6|vol(To)|

Mi + 3

∫ 1

0

∫ 1−u

0

(uA1 + vB1 + wC1)
mi×

(uA2 + vB2 + wC2)
ni×

(uA3 + vB3 + wC3)
oi dv du.

(3.61)

Observe that on the right-hand side we got the same integrals as in Equation (3.38), thus

∫

To

ŷmi

1 ŷni

2 ŷoi3 dŷ =
6|vol(To)|

Mi + 3
Snimioi(A,B,C), (3.62)

where Snimioi can be calculated using the recursive formulas from Equations (3.47)–(3.49).

Hence, the computational complexity for the whole set will be O(M3), where M is the

maximal degree of polynomials from the {ωi} set.

Similarly to the exact surface integration approach, the volumetric scheme also provides

the exact integrals over each tetrahedron. Moreover, it is possible to derive an approximate

scheme for the volumetric case too. However, the applied naive tetrahedron generation

gives much larger integration domains than the triangles used in the surface integration case,

which leads to higher interpolation errors. Note that, a more accurate approximation could

be achieved using a more sophisticated tetrahedron generation method, but it also increases

the number of tetrahedrons along with the computational time. Therefore, in practice, it

does not worth to use the approximate volumetric scheme.

3.4 Numerical Implementation

Let us continue by analyzing the numerical aspects of the proposed framework. As we

observed above, representing the continuous Ft and Fo by either a set of voxels or by

triangular surface meshes, will lead to discrete approximations only. Hence, the integrals

from Equation (3.3) will be approximately valid as well. In a real application, the objects

are subject to various segmentation errors and image acquisition artifacts, which again

could introduce errors into the systems. Therefore, we construct overdetermined systems,

i.e. ℓ > N in Equation (3.3), which are solved in the least squares sense via a Levenberg-

Marquardt algorithm.

Since the problem is solved by minimizing the algebraic error, proper normalization is

critical for numerical stability. For that purpose, the template and observation coordinates are

normalized into the [−0.5, 0.5] interval by applying normalizing transformations No and Nt,
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respectively:

No =













o1 0 0 −o1O1

0 o2 0 −o2O2

0 0 o3 −o3O3

0 0 0 1













, (3.63)

Nt =













t1 0 0 −t1T1

0 t2 0 −t2T2

0 0 t3 −t3T3

0 0 0 1













, (3.64)

where Ti, Oi (i = 1, . . . , 3) are the centroids of the template and the observation, respectively

and ti, oi (i = 1, . . . , 3) are the corresponding scale factors. This normalization will basically

transform the input objects into a unit cube centered at the origin.

The resulting ϕ∗ transformation acts between the normalized objects, hence we have to

denormalize it. In our experiments, we register the template image to the observation:

Ft
ϕ

−→ Fo

↓ ↓

Nt(Ft)
ϕ∗

−→ No(Fo)

(3.65)

therefore to obtain ϕ from ϕ∗, we have to use Nt and the inverse of No:

N−1
o =













1/o1 0 0 O1

0 1/o2 0 O2

0 0 1/o3 O3

0 0 0 1













(3.66)

For linear transformations, denormalization is straightforward, hence we only have to

multiply each side of the estimated matrix with the particular normalizer or denormalizer

transformation. In non-linear cases, however, the final transformation will be a newly com-

posed function in the form of

ϕ = N−1
o ◦ ϕ∗ ◦Nt. (3.67)

The range of the ωi functions also should be normalized into [−1, 1], in order to ensure

a balanced contribution of the equations to the algebraic error. In [7], this is achieved by

dividing the equations with the maximal magnitude of each integral over the zero-centered

unit circle. Analogously, our experiments showed that the input objects are never transformed

out the zero-centered unit sphere [Sánta and Kato, 2018][Sánta and Kato, 2013a], thus we

can use this domain to determine the maximal magnitude integrals for volumetric images.

For the surface integration based method, the object having the largest possible surface area

with respect to the objects used in our experiments is also happens to be the unit sphere.

Therefore our integrals have been divided by the following constants:

Ni =

∫

S

|ωi(x)| dx, (3.68)

where S domain will be the zero-centered unit sphere for the volumetric and the surface of

the same sphere for the surface approaches. These integrals are computed by making use of
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the proposed numerical schemes from Section 3.3.

3.4.1 Voxel Representation

Combining the general voxel-based system from Equation (3.21) with the normalizations

above leads to the following system

|No|

Ni

∑

Y∈F̂o

ωi(Y) =
|Nt|

Ni

∑

X∈F̂t

ω(π(X))|Jπ(X)| (3.69)

where F̂o and F̂t are sets of the normalized voxel coordinates of the observation and tem-

plate respectively, and |No| and |Nt| are the determinants of the corresponding normalizing

transformations. Applying the proposed normalizations to the polynomial system described

in Section 3.3.1 results in a similar formula. The outline of the algorithm can be found

in Algorithm 3.1. For the sake of simplicity, this algorithm will be referred to as voxel in the

following. Moreover, when we use the polynomial framework described in Section 3.3.1, we

will use voxel_poly notation.

Algorithm 3.1 Pseudo code of the voxel-based algorithm
Input: template and observation voxels
Output: The transformation parameters of ϕ

1: Choose a set of ℓ > k non-linear functions {ωi}
ℓ
i=1, and for each ωi compute the normal-

izing constant Ni using Equation (3.68).
2: Compute the normalizing transformations No and Nt as in Equation (3.63) and Equa-

tion (3.64), respectively, which maps voxel coordinates into [−0.5, 0.5].
3: Find a least squares solution of the system from Equation (3.69) using the Levenberg-

Marquardt algorithm. Use the identity transformation for initialization.
4: Denormalize the solution ϕ∗ using Equation (3.67), which provides the parameters of

the aligning transformation.

3.4.2 Triangular Surface Mesh Based Algorithm

Now let us observe how the normalizations are acting on the systems of equations when we

are dealing with triangular surfaces. Using the volumetric integration from Section 3.3.2, we

get the following approximation of our system:

1

Ni

∑

o∈No(O△)

sgn(vol(To))

∫

To

ymi

1 yni

2 yoi3 dy ≈

1

Ni

∑

π∈ϕ(Nt(T△))

sgn(vol(Tπ))

∫

Tπ

zmi

1 zni

2 zoi3 dz, (3.70)

where i = 1 . . . ℓ and the integrals over tetrahedrons can be computed via Equation (3.62).

With the surface integration approach from Section 3.3.2, we get a similar system

1

Ni

∑

o∈No(O△)

∫

o

ymi

1 yni

2 yoi3 dy ≈
1

Ni

∑

π∈ϕ(Nt(T△))

∫

π

zmi

1 zni

2 zoi3 dz, (3.71)

where i = 1, . . . , ℓ and the surface integrals over the triangles given by Equation (3.42).

The pseudo code of the triangular surface based algorithm can be found in Algorithm 3.2.

In order to distinguish between the possible integration schemes, volumetric (based on Equa-
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tion (3.70)), surface (built upon of Equation (3.71)) and approximate surface integration

(using Equation (3.52)) approaches will be referred to as trisurf_vol, trisurf_surf

and trisurf_surf-approx, respectively.

Algorithm 3.2 Pseudo code of the triangular surface based algorithm
Input: template and observation triangular surface meshes
Output: The transformation parameters of ϕ

1: Choose a {ωi}
ℓ
i=1 set of power functions described in Equation (3.9), such that ℓ > N

and for each ωi compute the normalizing constant Ni using Equation (3.68).
2: Compute the normalizing transformations Nt and No which maps vertex coordinates

into [−0.5, 0.5].
3: Construct the system of equations Equation (3.71) or Equation (3.70) for surface or

volumetric schemes, respectively. The integrals could be determined exactly using the
recursive formulas from Equations (3.47)–(3.49) or approximated in the surface case by
Equation (3.52).

4: Find a least squares solution of the system using the Levenberg-Marquardt algorithm
initialized with the identity transformation.

5: Denormalizing the solution gives the parameters of the aligning transformation.

3.5 Experimental Results

In the following section, we will summarize our experimental results with the proposed

approaches on multiple synthetic and real datasets. On volumetric images the registration

error has been quantitatively evaluated based on a Dice coefficient inspired metric:

δ =
|Fr △ Fo|

|Fr|+ |Fo|
· 100%, (3.72)

where Fo and Fr denote the set of foreground voxels of the observation and registered objects

respectively. We observed that δ < 10% corresponds to visually acceptable alignment.

This metric describes the accuracy of the alignment well when volumetric objects are

available. These objects, however, could not be obtained when we work with open surfaces.

In these cases, we used two different metrics in a complementary manner to describe the

differences between two open surfaces. The first metric is the normalized difference of the

surface areas of the objects, the second is the maximal root mean square (RMS) distance be-

tween the closest points of the triangular meshes, denoted by Darea and DRMS , respectively:

Darea =
| area(O△)− area(ϕ(T△))|

| areaO△|
· 100% (3.73)

DRMS = max{RMS(O△, ϕ(T△)), RMS(ϕ(T△), O△)}, (3.74)

where

RMS(S1, S2) =

√

√

√

√

1

|V (S1)|

∑

p∈V (S1)

inf
q∈S2

‖p− q‖2,

and S1, S2 are the corresponding surfaces, while V (S1) denotes the set of all vertices of S1.

The RMS function basically estimates the distance between each vertex of the first triangular

surface and the closest (not necessarily vertex) point of the second triangular surface. This

measure is more accurate than the simple vertex-wise distances and taking the maximum of
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the values computed with swapped arguments leads to a symmetric measure between the

surfaces.

Note that, neither of the last two metrics could be used per se because each one has its

own drawback. For example, using only the DRMS measure leads to accepting extreme

solutions like transforming the whole template object into one triangle of the observation.

Similarly, the Darea measure will be minimal for all test cases where the physical deformation

preserves the surface area of the input object.

The algorithms have been implemented in C++ using the Levenberg-Marquardt implemen-

tation of Lourakis [108]. All tests were run on a PC with Core i5 3.1 GHz architecture.

3.5.1 Synthetic Tests on Volumetric Data

In our first block of experiments, we will focus on the alignment of volumetric data. In

order to quantitatively evaluate the performance of the proposed methods, we used large,

synthetically generated volumetric datasets.

The registered objects, as well as synthetic observations, were generated by the following

procedure (in Matlab): First, a smooth triangular mesh has been created from the object’s

surface using Matlab’s internal isosurface function. Then the transformation was applied

to the vertices yielding a transformed triangular mesh, from which the final voxelized ob-

ject was obtained by the binvox program available from http://www.patrickmin.com/

binvox/ [109]. Following this process, two polynomial and three thin plate splines based

datasets were generated containing observations of size 0.1− 2.5 million voxels.

Polynomial Dataset

In the first block of experiments, we will present our results on the polynomial dataset. The

dataset was randomly generated using second and third order polynomial deformations,

which were applied to different template objects. The transformation parameters were ran-

domly picked from the following intervals: a11, b21, c31 ∈ [0.5; 1.5], a21, a31, b11, b31, c11, c21 ∈

[−0.25; 0.25] and all other parameters are from [−0.5; 0.5]. Note that, a00 = b00 = c00 = 0

(i.e. no translations), because initial normalization would remove any larger translations.

The overall size of the generated dataset is 500. Topology preservation was another impor-

tant requirement of the generated transformation. In order to achieve this, diffeomorphic

transformations were generated by constraining the Jacobian of the generated transforma-

tion to be positive everywhere over the objects [Sánta and Kato, 2018][Sánta and Kato,

2013a].

For these experiments, we used second and third order polynomial models from Equa-

tion (3.10) (i.e. d = 2, 3), yielding 30 and 60 parameters, respectively [Sánta and Kato,

2012b]. The experiments were made by making use of Algorithm 3.2. On the whole poly-

nomial dataset, using third order transformation model voxel approach has achieved good

results, having 7.02% average alignment accuracy measured by Equation (3.72). The average

runtime was 13.96 minutes. Sample results can be found in Figure 3.2.

Experiments have been made with voxel_poly as well, where we used a second order

polynomial model as described in Section 3.3.1. The necessary equations were generated

by a simple Maple program, which also exported them to C++ code. Then, the generated

code was integrated into the implemented framework. As expected, the separation reduced

the runtime of the algorithm by one order of magnitude, but, since it estimates the same
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template observation voxel

Figure 3.2: Sample results from the polynomial synthetic dataset. The first two columns
show the templates and the observations, respectively, and in the last column, we present the
overlapping voxels of the registered objects in yellow and the non-overlapping ones in red
and green.

equations as the naive volumetric approach, the alignment accuracy remained the same. The

outline of this experiment can be found in Table 3.1.

Method
Runtime (sec) δ(%)

m µ σ m µ σ
voxel_poly 9 10.09 4.21

7.41 7.92 4.3
voxel 105 124.07 103.19

Table 3.1: Comparison between voxel_poly and voxel on the polynomial dataset. While
maintaining the same accuracy, voxel_poly provided results are 10 times faster than voxel.

Thin Plate Spline Dataset

In this section, we will focus on solving the registration problem with Algorithm 3.2 on the

synthetic TPS dataset. For this dataset 750 observations were generated based on thin plate

splines with 16, 32, and 64 control points placed on the corresponding grids, yielding three

different subsets with various degrees of freedom. Since the number of control points is

proportional to the degrees of freedom, we will refer to each subset by denoting the number

of control points used for the generation. The parameters of the synthetic deformations were

obtained by applying random translations with elements from [−0.2, 0.2] to the control point

positions. The resulting point correspondences were used to construct interpolating thin

plate splines, which were applied to different template objects.

In the first experiment, we observed the sensitivity of the proposed approaches with

respect to the mesh resolution [Sánta and Kato, 2018][Sánta and Kato, 2013a]. In this

experiment, we used the surface extractor algorithms from the CGAL library [63, 110]. This

library implements a Delaunay refinement algorithm, giving the opportunity to construct

meshes with different qualities and resolutions [110, 111]. Herein, the resolution of the

triangular meshes is controlled by the maximal radius r of the corresponding Delaunay

sphere for each triangle [Sánta and Kato, 2018][Sánta and Kato, 2013a]. Using our synthetic

dataset, triangular meshes have been created for r ∈ {1, 3, 5, 10} and the registration problem

has been solved by the trisurf_vol algorithm. The performance has been quantitatively
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evaluated by the δ measure from Equation (3.72). The results are presented in Figure 3.4.

template observation trisurf_vol GMMREG [5] CPD [6]

Figure 3.3: Sample results from the synthetic TPS database. The first two columns show
the templates and the observations, respectively, and in the other columns, we present the
overlapping voxels of the registered objects in yellow and the non-overlapping ones in red
and green. For GMMREG [5] and CPD [6], we present the best results for each particular
test case.

Obviously, the resolution of the triangular mesh affects the computational time. Hence,

the computational time could be significantly reduced by decreasing r at the price of a slightly

lower registration accuracy. We found that r = 5 has the best quality over time ratio on our

synthetic dataset [Sánta and Kato, 2018][Sánta and Kato, 2013a].
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Figure 3.4: Comparison of registration error and computing time with various r values for
the Delaunay sphere in surface mesh extraction.

In the next experiment, the registration problem has been solved for all test cases by mak-

ing use of the trisurf_vol and trisurf_surf approaches. We used multiple control point

configurations with 16, 32 and 64 points generated by the proposed control point placement

strategies from Section 3.2.2. As we stated in Chapter 3.4, the runtime is proportional to

the number of ω functions used for our system, which based on the number of parameters

of the transformation model. For the current tests, we used the first 89, 120 and 220 power

functions from the set ωi(x) = xmi

1 xni

2 xoi
3 , where (mi, ni, oi)

220
i=1 = {(a, b, c) | a + b + c =

O,O = 1, . . . , 9}.

Our results on each synthetic subset are presented in Figure 3.5 and the best results on

the whole dataset have been summarized in Table 3.2. In order to show the categorized

results in Figure 3.5, the median of the estimated values have been taken for each synthetic

subset and beside the registration accuracy, the running times have been presented as well.

Let us start our investigation by focusing on the results of trisurf_vol first by observing
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Figure 3.5: Results on the volumetric synthetic dataset. On these plots we show the median
of the registration results with respect to the δ-measure from Equation (3.72) and the running
times for each subset categorized by the number of control points used for the generation.
The rows contain results obtained by trisurf_vol and by trisurf_surf, respectively. For
each row, the first two columns present the results using the grid control point placement
strategy, while the results of the second two columns are obtained by using the surface
sampling based strategy (see Section 3.2.2 for more details).

the statistics presented in the first row of Figure 3.5. The tests have confirmed our preliminary

assumptions on control point placement strategies as the grid based strategy outperformed

the sampling approach when we used at least the same number of control points for the

registration as we used for the test case generation. This effect is caused by the fact that we

used a similar strategy for the synthetic generation. However, the surface sampling strategy

seems to handle the underfitting problem more accurately, although it still does not give

visually acceptable results overall. It is true for both strategies that the accuracy benefits

from the overfitting of the model, but note that in the current experiment the dataset has not

been affected by any type of noise. Moreover, for both strategies, the models containing 64

control points have achieved the best results statistically. Observe that the grid model with

64 control points seems to be independent from the degrees of freedom of the underlying

deformation in terms of alignment accuracy.

Observing the running times yields some interesting findings, too. As we mentioned

above, the runtime of the algorithm is mostly affected by the number of determinable param-

eters, which also defines the necessary number of ω functions. At the same time, we experi-

enced that increasing the number of control points also makes the estimation process more

stable, hence decreases the number of necessary iteration steps of the Levenberg-Marquardt

solver. As an example, examine that any configuration with 32 control points has lower

running time than the results with 16 points. Moreover, while the 64 grid configuration

achieved the same alignment accuracy on each set, the running time was increasing with the

complexity of the corresponding set. Also, note that the surface sampling strategy achieved

smaller running times than the corresponding grid based case.

Now, let us continue with the results of trisurf_surf presented in the second row

of Figure 3.5. While most of our findings from the volumetric case can be applied to the

surface approach, we have to mention that the volumetric approach outperformed the surface

based algorithm in the accuracy of the alignments. This is caused by the stability issues

we have mentioned in Section 3.1, which also explains the higher values in the running
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times. Furthermore, there is no significant difference between the control point placement

strategies in terms of alignment accuracy, although the surface sampling approach achieved

better running times.

Method
Runtime (min) δ(%)

m µ σ m µ σ

trisurf_vol

Grid
1.27 1.52 1.24 5.98 6.88 5.09

trisurf_vol

Sampling
0.87 1.23 1.04 8.96 9.45 3.49

trisurf_surf

Grid
1.37 1.83 1.76 9.18 9.62 3.64

trisurf_surf

Sampling
0.72 1.09 0.98 9.80 10.38 4.12

voxel Grid 31.42 59.77 67.74 7.19 7.05 2.3

Table 3.2: Results on 750 synthetic images using 64 control points for each configuration (m
– median, µ – mean and σ – standard deviation).

In the last line of Table 3.2, we compared the registration quality and computing times

of the voxel and trisurf_vol algorithms for r = 5. The mesh-based algorithm has outper-

formed the voxel-based approach both in terms of alignment accuracy and computational

time. This latter result is not surprising, as the mesh-based algorithm works only with tri-

angle vertices whose number is less than 9000, whereas the voxel-based method has to deal

with several hundred thousand voxels (see also Figure 3.7).

The difference between the alignment accuracy, however, needs further elaboration.

While both methods based on the volumetric scheme, there is a difference between the

way they approximate the continuous integrals in Equation (3.21) and Equation (3.34). In

the voxel-based case, approximation error is due to 1) the discretization error on the object’s

surface (inner voxels do not produce such errors) and 2) the Jacobian is implicitly assumed

to be constant within each voxel (including the inner ones!). However, the mesh-based

algorithm computes the exact (continuous) integrals over each tetrahedron, therefore the

only source of the approximation error is the difference between the true object surface and

its approximating triangular mesh.
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Figure 3.6: Comparison between the two surface based approaches on the volumetric dataset.
The trisurf_surf algorithm achieves slightly better results on the alignment accuracy, but
the trisurf_surf-approx approach has much lower runtime.

We have also compared the two proposed surface integration based approaches, the exact

(trisurf_surf) and the approximate approach (trisurf_surf-approx) on the volumetric

dataset and we presented the results in Figure 3.6. Fulfilling the expectations, the approxi-

mate approach gives a result almost 10 times faster than the exact algorithm. Moreover, the

differences between the accuracy remain low for the whole dataset.
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Figure 3.7: Comparison of the best runs with the surface based and volumetric approaches
with GMMREG [5] and CPD [6]. The number at end of each plot’s name denotes the
corresponding r value used for triangular surface generation.

In the last experiment of the current block, we have compared our results to the point-

based registration frameworks presented in [5] (GMMREG) and [6] (CPD) on a smaller

synthetic subset. We used the C++ implementation of these methods available from http:

//code.google.com/p/gmmreg and set the parameters to their default values (within the

given Matlab framework). The input of these algorithms were the vertices of the extracted

triangular surface meshes, using the same extraction technique as in the previous tests. For

the best GMMREG set both the average and median runtimes were 30 minutes, for the lower

resolutions the average and median runtimes were 3 minutes. In Figure 3.7, quantitative

results for r ∈ {2.5, 4.5, 6.5} indicate that these methods provide inferior alignments to

the volumetric approach and similar, but less stable results compared to the surface based

algorithm. Sample results presented in Figure 3.3.

3.5.2 Synthetic Tests on Surface Data

In the next block of experiments, we will focus on registering open triangular surfaces. For

these tests, an artificially cropped dataset has been created from the synthetically generated

volumetric data. Each template object has been cut into two pieces using randomly generated

3D planes, keeping only the vertices on the positive sides of each plane. Using the volumetric

dataset, we transformed the obtained templates by the original transformation, in order to

crop the corresponding parts from the observations too. This procedure ensures that the

produced observation will be the transformed template, without any larger additional or

missing parts. The triangular meshes were generated using the r = 5 configuration. For

examples, see Figure 3.8.

In order to register these open surfaces, the trisurf_surf and trisurf_surf-approx

approaches have been used and experiments have been made with the grid and the surface

sampling strategies as well. Unfortunately, we have lost the exact degrees of freedom of the

obtained dataset due to the slicing, thus we will use TPS models with 64 control points for

all tests. Some of our results could be found in Figure 3.8.

In order to quantitatively evaluate the results, we used the Darea and the DRMS metrics

from Equation (3.73) and Equation (3.74), respectively. Our experiments have confirmed

that if the Darea is below 1.5% and the DRMS is below 2 voxels the determined transforma-

tion gives a visually good alignment. Furthermore, if the Darea is below 2% and the DRMS
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template observation result distance image

Figure 3.8: Some examples from the artificially cropped dataset and the solution given by
the surface-based approach. The first three columns show the template, the observation, and
the transformed template, respectively. In the fourth column, each point of the observation
colored based on the distance from the closest point of the transformed template. Note that,
the values are expressed in voxels.

is below 2.5 voxels the solution is visually acceptable.

On this dataset, the trisurf_surf method has achieved better results using the surface

sampling control point placement strategy than using the grid based approach. In the former

case, 66% of visually good and 83.33% of visually acceptable solutions have been provided

from the 750 test cases. In the latter case, the proposed approach achieved visually good

transformations on 62.67% and visually acceptable alignments on 77.87% of the whole

dataset. We have evaluated the approximate algorithm as well, which achieved slightly

better results on the alignment accuracy (87.73% of visually acceptable and 67.74% of

visually good alignments) and reduced the computational time significantly from an average

127 seconds to 17 seconds. The quantitative results using the surface sampling strategy

presented in Figure 3.9.

Our best results have been compared to the point-based frameworks on a smaller subset,

too. The proposed approach outperformed the GMMREG [5] and CPD [6] algorithms on the

alignment accuracy and running times. Note that, for these experiments, we used the same

triangular surface meshes generated by using r = 5 as the maximal radius of a Delaunay

sphere for each triangle. The results of this experiment summarized in Table 3.3.

3.5.3 Robustness Against Noise

In practice, segmentation never produces perfect shapes, therefore robustness against seg-

mentation errors also was evaluated on simulated volumetric data: we randomly added

or removed squares uniformly around the boundary of each slice of the observations yield-

ing surface error of 10%, 20% and 30% of the original object volume (see sample slices in

Figure 3.10). In the first experiment, the templates have been registered to the noisy ob-

servations using trisurf_vol and trisurf_surf-approx using TPS model with the same

control point positions as we used for the dataset generation. The plots in Figure 3.10 show

the quantitative evaluation of the alignment error δ on 125 objects estimated between the

registration results and the original observations. The results confirm the statements from
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Figure 3.9: Synthetic results on the open surface dataset using the approximate surface
integration approach. The control points have been placed using the Farthest Point Sampling
strategy on the template surfaces. In the diagram, the Darea metric (y-axis) plotted against
the DRMS metric (x-axis). The areas denoted by the yellow and gray rectangles meaning
the visually good and the visually acceptable results, respectively. From the 750 test cases,
66% are visually good and 83.33% are visually acceptable solutions.

GMMREG CPD trisurf_surf-approx

DRMS

m 2.11 1.76 1.26

µ 7.12 2.49 1.20

σ 13.65 1.59 0.5

Darea(%)
m 2.52 7.23 0.6

µ 16.87 8.62 0.44

σ 45.95 6.06 0.52

Runtime (sec)
m 13.93 19.53 10

µ 38.1 57.48 12.92

σ 37.67 57.66 13.41

Table 3.3: Comparison of the surface based algorithm with the GMMREG and the CPD
methods on the open surface dataset (m – median, µ – mean and σ – standard deviation).
We used the approximate computation scheme with the surface sampling control point
placement strategy of 64 points. The proposed approach outperformed the other methods
in the terms of DRMS and Darea metrics and achieved better running times. Note that, for
these experiments, we used the same triangular surface meshes generated using the r = 5
configuration.

Section 3.1 as while the volumetric approach is quite robust against the segmentation errors

up to as high as 20% of the object volume, the surface integration approach gives poor results

for even 5% of surface errors.

In our volumetric experiments, we claimed that the proposed approach benefits from

the cases when the approximating transformation has higher degrees of freedom than the

underlying deformation, i.e. the case of model overfitting. Although this statement is true

for noiseless cases, there are several situations when the overfitting has a negative effect on

the outcome of the algorithm.

One of these cases is the problem of occlusions. Just as every area based approach,

none of the proposed approaches could handle occlusions well. Essentially, the algorithms

will find a TPS, which aligns the template with the occluded observation, since usually the

degrees of freedom is high enough to handle the missing parts. As an example for this issue,

see Figure 3.11, where the template is aligned to an artificially cropped observation.

In the next experiment, we are investigating the effect of overfitting when surface errors
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Figure 3.10: Robustness test results for various degree of synthetically generated surface
errors. For each test, samples of surface errors on the same voxel slice are shown.
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Figure 3.11: The alignment to an artificially cropped observation. The solution is on the
boundary of visual acceptability if considering the cropped observation, although it is very
far from the original one.

are available. The problem has been solved using a TPS model built from 64 control points

placed on a uniform grid. The results of this experiment are presented in the first diagram of

Figure 3.12. While in the non-overfitting cases the algorithm was robust against the surface

noise as long as it does not exceeds 20%, in the presence of overfitting this border moves

down to 10%. In order to overcome this problem, a regularizer term, more precisely the

bending energy of the TPS model from Equation (3.17), has been added to the algebraic error

of the system. The λ parameter of then bending energy term has been set to 10−6. The gain

caused by the regularization in the noise tolerance is around 5%.

3.5.4 Medical Applications

Surface registration has several possible application areas in the medical field [4, 98]. The

input images could be subject to stronger non-rigid deformations due to the motion of

the patients, in addition, the registration across incompatible modalities could also raise

difficulties. In the following, we will introduce two different applications from the medical

field. First, we will show the capabilities in registering deformable lung CT scans, then
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Figure 3.12: The quantitative results in the presence of surface errors and overfitting. On
the bottom diagram, the overfitting problem has been partially handled by minimizing the
bending energy of the TPS model.

we present an experiment on inter-patient registration of the pial surfaces of human brains

extracted from MRI images.

Lung Alignment

Lung alignment is a crucial task in lung cancer diagnosis [112]. During the treatment,

changes in the tumor size are determined by comparing follow-up PET/CT scans which are

taken at regular intervals depending on the treatment and the size of the tumor. Due to

respiratory motion, the lung is subject to a nonlinear deformation between such follow-ups,

hence it is hard to automatically find correspondences. A common practice is to determine

corresponding regions by hand, but this makes the procedure time consuming and the

obtained alignments may not be accurate enough for measuring changes [Sánta and Kato,

2018][Sánta and Kato, 2013a].

Figure 3.13: Alignment of lung CT volumes. For each block, we present the template, the
observation, the overlaid result image and a sample slice combining the grayscale values of
the original and the transformed image as a checkerboard pattern, respectively. Segmented
3D lung images were generated by the InterView Fusion software of Mediso Ltd.

We successfully applied the proposed approach to align 3D lung CT scans [Sánta and Kato,

2018][Sánta and Kato, 2013a]. The input voxel volumes were first transformed into a

triangular mesh using r = 5, and then the TPS parameters were recovered by trisurf_vol.

For this experiment, we used 64 control points placed on a uniform grid. Promising results

were obtained on the available 8 image pairs with a median δ error of 5.41% (the mean

and standard deviation were 5.83% and 2.09%, respectively). Similarly to robustness tests,

we added the bending energy from Equation (3.17) to the algebraic error of the system of
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equations, which is then minimized simultaneously. The minimizing of the bending energy

gave a smooth diffeomorphic alignment, which is consistent on the grayscale level also. The

λ parameter was set experimentally to 10−8.

Some of our results presented in Figure 3.13, where we also show the achieved inner

alignment on grayscale slices of the original lung CT images. For these slices, the original

and transformed images were combined as an 8× 8 checkerboard pattern [Sánta and Kato,

2018][Sánta and Kato, 2013a].

Brain Surface Alignment

Pairwise brain registration is a very important and actively studied field in medical image

processing [11, 53, 113]. Herein, motivated by the algorithm described in [113], the pro-

posed approach is applied to register the pial surfaces of human brains between different

patients. Following [113], our aim was to develop a surface based registration approach

acting as an initial step in a multi-phase registration algorithm. Accordingly, the algorithm is

intended to be fast and accurate on the surface, but we did not require proper alignment of

the inner parts.

The MR brain data sets and their manual segmentations were provided by the Center

for Morphometric Analysis at Massachusetts General Hospital and are available at http:

//www.cma.mgh.harvard.edu/ibsr/. Before the registration, the images have been resliced

to achieve isotropic voxels in millimeters, then a triangular mesh with r = 5 have been

extracted. Also note that, the volumetric images have been ”positionally normalized” into

the Talairach orientation (rotation only) by default. The dataset could be rearranged into

three groups based on the physical resolution of each image, hence we solved the registration

between images from the same resolution group.

In our first experiment, we tried to align the extracted surfaces using TPS model built

from 64 control points and while we got promising results on the accuracy of the alignment,

the runtime of each test case became too high for an initial alignment (e.g. 3.7 minutes in

average). Then inspired by [113], we aligned the left and right pial surfaces separately using

32 control points for each, which made our results more accurate and the runtime became 7

times faster. In both cases, we used the trisurf_vol approach for estimating the parameters

of the TPS model with the bending energy minimization having λ = 10−5.

The outline of this experiment can be found in Table 3.4 and we show two examples

in Figure 3.14. The results have been quantitatively evaluated by the δ and the DRMS

measures, too, because the latter metric raises higher penalties on larger surface distances.

The results are encouraging, emphasizing the running times of the algorithm giving an

acceptable result in 35 seconds for one complete surface.

3.5.5 3D Face Alignment

The analysis of 3D faces is an important task in many applications, like face comparison or

face motion capture [114–117]. A core component of many 3D face analysis tasks is the

geometric alignment of faces. Most of the alignment algorithms are relying on the extraction

of well-defined feature points or landmarks but, unfortunately, landmark localization in 3D

data is a hard task even by user interaction [Sánta and Kato, 2018][Sánta and Kato, 2016a].

Our goal is to find a non-rigid alignment between triangulated 3D faces and we used

the Bosphorus Dataset [118] for our experiments [Sánta and Kato, 2018][Sánta and Kato,
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Group 1 Group 2 Group 3

DRMS

m 2.45 2.81 1.82
µ 2.86 2.85 1.92
σ 1.13 0.4 0.31

δ (%)
m 4.26 7.2 3.9
µ 4.27 7.18 3.83
σ 0.29 0.58 0.19

Runtime (sec)
m 34 35 35.5
µ 34.36 34.93 37
σ 7.77 4.5 7.24

Table 3.4: The results on brain surface alignment (m – median, µ – mean, σ – standard
deviation). The input data has been classified into three groups based on the physical
resolution of each image.

Figure 3.14: Two results of the brain surface alignment tests from different resolution groups
having various qualities.

2016a]. This dataset consists 4666 face scans with 2D color images and 3D surface points.

The ground truth landmark locations are also denoted in 24 feature points, giving the oppor-

tunity to evaluate our approach in the landmarks.

The triangular surface meshes have been generated from the Bosphorus 3D point clouds

by making use of the Poisson algorithm [119] implemented using CGAL [120]. Similarly

to the synthetic tests, the mesh resolution is controlled by the maximal radius of the corre-

sponding Delaunay sphere for each triangle. Since only one side of the human head can be

reconstructed from the data, the triangular surfaces will be not closed. Therefore, we used

the trisurf_surf-approx algorithm with 64 control points for the TPS model, placed on the

surface by the Farthest Point Sampling based strategy [Sánta and Kato, 2018][Sánta and Kato,

2016a].

During our tests, we observed that not every part of the triangular surfaces are equally

important for aligning the faces, but our algorithm generally assume this [Sánta and Kato,

2018][Sánta and Kato, 2016a]. Moreover, facial scans typically focus on the frontal face,

but depending on the actual setting, other parts of the head are also visible. Therefore the

scanned surfaces will not match as a whole! The exact segmentation of corresponding parts

is a rather complex problem as there are no clearly defined borders of a face in a 3D scan.

Instead of solving a hard 3D face segmentation problem, let us define the integra-

tion domains in Equation (3.34) as fuzzy sets [121, 122] with a WT : T△ → [0, 1] and

WO : O△ → [0, 1] for the template and the observation, respectively [Sánta and Kato,

2018][Sánta and Kato, 2016a]. These membership functions are assigning a weight to
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each triangle in the integrals of Equation (3.34):

∑

o∈O△

WO(o)

∫

o

ωi(y) dy ≈
∑

π∈ϕ(T△)

WT (π)

∫

π

ωi(z) dz, (3.75)

where i = 1, . . . , ℓ. We refer to triangles with membership value 1 as inner parts of the face,

while triangles with 0 membership value will be outer parts. According to Equation (3.75),

the outer parts have no contribution to the equations, however, the inner parts are always

considered. Every triangle which is not in these two sets will be referred to as the fuzzy parts

of the faces. A membership function is given by three parameters:

• λ1 the upper threshold of the inner parts (the value is constant 1)

• λ2 the lower threshold of the outer parts (the value is constant 0)

• the interpolation method for the area between λ1 and λ2

The thresholds are expressed as the percentage of the maximal geodesic distance within the

face. We tried two different maximal values: the true maximal geodesic distance from the

closest point to the camera and the mean of the top 5% geodesic distances from the same

point. When triangle membership functions are applied, the control point placement is also

restricted to the inner parts of the template.

Figure 3.15: An example for the membership functions. The green area denotes the inner
parts having membership value of 1, while the yellow and red regions denoting the areas
between λ1 and λ2, and the areas above λ2, respectively.

How to determine λ1 and λ2 thresholds? In the following, we will assume that the

corresponding areas of the faces contain all of the main facial landmarks, thus the estima-

tion will be based on the normalized geodesic distances of the landmarks [Sánta and Kato,

2018][Sánta and Kato, 2016a]. According to our experiments, taking the mean of the max-

imal normalized distances of the landmarks for each face in a training set will provide a

general upper bound, where the resulting interval will contain the distances for most of the

facial landmarks in the set. Based on this observation the thresholds can be estimated by

making use of the ground truth landmark locations. Let us denote the set of landmarks of

the ith training face by Li = {lj ∈ R
3}. First, for each face from the training set, we calculate

the normalized geodesic distances of its landmarks w.r.t. the nose tip as described above.

Then, according to our observation, we determine the farthest landmark for the ith face as

λi
1 = max

(

{DG(lj) | lj ∈ Li}
)

. (3.76)
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Finally, taking the mean of the estimated λi
1 set will provide λ1 for the whole dataset

λ1 = µ
(

{λi
1}
)

. (3.77)

Similarly, for λ2 we simply add the standard deviation of the maximal normalized distances

to λ1:

λ2 = λ1 + σ
(

{λi
1}
)

. (3.78)

Now, let us summarize the experimental results on the Bosphorus Dataset [118]. The

tests have been made with a randomly generated subset containing 153 pairs of faces with

neutral facial expression and we determined the deformations between faces of different

people (i.e. inter-patient registration). The results have been quantitatively evaluated based

on the average landmark distances between the transformed and the ground truth locations:

DGT =
1

N

N
∑

i=1

‖xi − x̂i‖, (3.79)

where N is the number of available landmarks for a pair of scans, xi ∈ O△ is the ground

truth and x̂i = ϕ(zi), zi ∈ T△ is the transformed landmark position of the ith landmark using

the estimated aligning transformation ϕ. The overall surface alignment accuracy also has

been characterized by Equation (3.74) metric.

In our first experiment, we show the benefits of the membership function on meshes

generated by r = 10 as the maximal radius of the enclosing Delaunay sphere. As described

above, each membership function depends on three parameters: the value of the thresholds

(λ1 and λ2) and the interpolation method for the interval between the thresholds. For the

interpolation, we define two possible functions:

Istepλ1λ2
(d) = 0.5, (3.80)

I linearλ1λ2
(d) = 1−

d− λ1

λ2 − λ1
, (3.81)

where Equation (3.80) is a simple constant function referred to as step, while Equa-

tion (3.81) is a linear interpolation function called linear in the following. In order to

determine the threshold values, we have to detect the nose tip for estimating the geodesic

distances. Fortunately, the coordinate system of the scans in the Bosphorus dataset is

established in a way, that the point having the maximal value on the Z axis is a good estimate

for the nose tip, thus we used this point in the geodesic distance calculations. Then, using

the algorithm described above, we determined the λ1 and λ2 parameters and got 71.07%

and 75.82% for λ1 and λ2, respectively. The results of this test are shown in Figure 3.16.

According to the DGT error measure from Equation (3.79), we have noticed that the

interpolation method has no strong influence on the outcome of the algorithm, therefore we

recommend to use the step function from Equation (3.80).

For our next experiments, we tried several triangular surface resolutions with r ∈ {2, 3, 5}

as the maximal radius for the enclosing Delaunay sphere of each triangle (similarly to the

synthetic experiments). Note that, these surface approximations will eventually reduce the

resolution of the input data by removing points and smoothing the surface. The loss in the

resolution can be measured by the number of vertices and triangles, thus the corresponding

statistics can be found in Table 3.5. Just as in the synthetic case, the aim of the current

experiment is to find the best runtime over quality ratio. The outline of this test is shown
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Figure 3.16: The obtained alignment accuracy in the first experiment estimated by DGT .
Each plot shows results with different weight functions.
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Figure 3.17: Example alignment on the Bosphorus dataset. The DRMS = 1.17mm and the
DGT = 5.4mm.

in Figure 3.18. We achieved the best results on the r = 3 case, with respect to the DGT

measure and the runtime of the algorithm. The average DGT error for the test dataset

is 6.71mm with an average running time of 16.4 seconds. Some results are presented

in Figure 3.19. For the surface alignment accuracy we got DRMS = 1.76mm (see Figure 3.17

for an example). From the results we conclude that the algorithm achieves good results

near the areas with significant curvature changes (e.g. nose and mouth), however, performs

poorly near the noisy eyebrows.

Point Cloud [118] r = 10 r = 5 r = 3 r = 2

36684
1821 2358 4128 8298
3826 4487 7994 16274

Table 3.5: A comparison of different mesh resolutions and the input point cloud [118]. We
show the number of points for the point cloud and the number of vertices and triangles,
respectively, for the triangular surface meshes.

In the last experiment, we have compared our results to GMMREG [5] and CPD [6]

approaches. Since the runtime of these algorithms are enormously high for the full original

point sets (the average is around 7-8 hours for one pair of faces), the methods have been

applied to the vertices of the same surface meshes as we used for our algorithm. The results

can be found in Figure 3.20. We used the step interpolation method for this test. The

GMMREG algorithm has achieved very good results, slightly outperforming our method and

the CPD algorithm on the DGT error, but CPD gives inferior alignment compared to our

approach. However, the proposed approach achieved the lowest running time.
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Figure 3.18: Alignment errors and running times for each resolution of r ∈ {2, 3, 5, 10}.
The alignment errors are determined as the Euclidean distance of the transformed and the
ground truth landmark locations. The first line corresponds to the step, the second line to
the linear interpolation method.

3.6 Summary

We have proposed a novel registration framework for aligning 3D objects without established

point-wise correspondences. The framework is able to work with multiple data representa-

tions. The basic idea is to set-up a system of non-linear equations whose solution directly

provides the parameters of the aligning transformation modeled by a parametric transforma-

tion model. Efficient numerical schemes were proposed for voxel and for closed and opened

triangular mesh representations. The efficiency and robustness of the proposed approach

have been demonstrated on large synthetic datasets. Our method compares favorably to

two recent 3D matching algorithms [5, 6]. Finally, the algorithm achieved promising results

in aligning lung CT images, brain surfaces and 3D facial scans, which demonstrates the

usefulness of the method in real life applications.
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Figure 3.19: Sample results on the Bosphorus dataset. In each row, we show the template,
the observation, the warped template and the landmark locations, respectively. In the last
column, green denotes the ground truth position and red is the estimated location. While
the proposed approach achieved good results near nose and mouth areas, the highest errors
are near the eyebrows.
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Figure 3.20: Comparison between the proposed, the GMMREG [5] and the CPD [6] algo-
rithms. On the left diagram, the DGT measure is presented, while on the right we show
the running times of each algorithm. The GMMREG slightly outperformed the proposed
approach and the CPD algorithm in terms of alignment accuracy, but the proposed approach
has the best running time.





Chapter 4

Robust Registration of 2D Images

In this chapter, we will present our results on registration of 2D images. The work has

addressed two different problems related to the algebraic framework introduced in the

previous chapter. In the first problem, the method’s tolerance against larger segmentation

errors has been investigated [Sánta and Kato, 2014].

In the second problem, we dealt with the ambiguity of the inner parts of shapes, when

they are registered using non-rigid transformation models with higher degrees of freedom.

This issue has been handled by regularization in the previous chapter, while herein we

investigate the possibility of using radiometric information within our algebraic frame-

work [Sánta and Kato, 2016b].

Each proposed method has been experimentally validated on synthetic and real datasets.

In addition, we have compared them to multiple state of the art approaches developed in

the recent years.

4.1 Registration Framework

In the following, we will build our methods upon the 2D registration frameworks introduced

in [7, 122]. Let us focus on the pair-wise registration of 2D image regions by estimating the

transformation between a template and an observation patch. Let us assume that the points

of these regions are denoted by Ft ⊂ R
2 and Fo ⊂ R

2, respectively. We are looking for the

parameters of a ϕ : R2 → R
2 application specific transformation model which aligns the

template and the observation.

Using these notations, the following relation holds for an arbitrary pair of corresponding

points x = [x1, x2] ∈ Ft and y = [y1, y2] ∈ Fo:

ϕ(x) = y (4.1)

While each of these point correspondences give exactly two constraints on the parameters

of ϕ, reliable landmark extraction could be a challenging task in the presence of non-rigid

geometric distortions.

Following [7, 122], instead of extracting individual point-correspondences, let us inte-

grate both sides of Equation (4.1):

∫

ϕ(Ft)

z dz =

∫

Fo

y dy. (4.2)

55
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In order to avoid generation of the transformed domain, we can apply the integral transfor-

mation to Equation (4.2), similarly to the 3D framework described in the previous chapter:

∫

Ft

ϕ(x)|Jϕ(x)| dx =

∫

Fo

y dy (4.3)

Recall that the integral transformation involves the Jacobian determinant of ϕ on the left-

hand side of the equation, which describes the relative change induced by the transformation

in the area of an infinitesimal region around each point. |Jϕ(x)| contains the partial deriva-

tives of the transformation.

Although, the equations of Equation (4.2) define two constraints on the parameters of

ϕ, generally, the number of parameters is much higher than two. One way to overcome

this problem is to follow [7, 122] and apply a set of independent non-linear functions

{ωi | ωi : R
2 → R}ℓi=1 to the coordinates of Equation (4.2) and Equation (4.3), respectively,

as
∫

ϕ(Ft)

ωi(z) dz =

∫

Fo

ωi(y) dy, (4.4)

∫

Ft

ωi(ϕ(x))|Jϕ(x)| dx =

∫

Fo

ωi(y) dy, (4.5)

where i = 1, . . . , ℓ. Using polynomial ω functions will eventually lead to a polynomial system

of equations and according to [7, 122], the framework is quite robust against several types

of geometric noise and segmentation error [7, 122].

Yet, in previous works, the larger segmentation errors (i.e. occlusions or disocclusions)

are categorized as a trivial case of failure, similarly to most area based methods. In many

applications originated from industrial and medical areas, we only have to deal with the

physical deformation due to the well-controlled circumstances of image acquisition, therefore

this is not a serious issue in such cases. In a less controlled environment (e.g. processing

images of surveillance systems), however, we always have to deal with different types of

noise and occlusions [Sánta and Kato, 2014].

In the next section, we will propose a solution for registering occluded shapes in the

presence of affine transformation. This group of transformations is useful in many practical

applications when we are dealing with linear or perspective motions. In the latter case, the

affine model is used as a first-order approximation of the deformation. This is a convenient

way to model the transformation when we work on images taken with classical pin-hole

cameras, but the distance of the camera from the objects is large compared to the size of the

object [2].

4.2 Affine Alignment of Occluded Shapes

In order to adapt the proposed framework above, let us assume that pursued transformation

is defined by a homogeneous affine matrix A ∈ R
3×3:

A =







a11 a12 a13

a21 a22 a23

0 0 1






. (4.6)
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A full affine transformation can be expressed using a single matrix multiplication between

the homogeneous coordinates of the template and observation denoted by x̄ = [x1, x2, 1]
T ∈

Ft ⊂ P
2 and ȳ = [y1, y2, 1]

T ∈ Fo ⊂ P
2, respectively. Note that, herein the appliance

of homogeneous coordinates only has practical importance. Moreover, since every affine

transformation preserves the last coordinate of the points, it could be removed anytime

to get the corresponding Cartesian point (see Section 2.2 for more details). Using such

notations, the identity relation from Equation (4.1) will become [Sánta and Kato, 2014]:

Ax̄ = ȳ ⇔ x̄ = A−1ȳ. (4.7)

recovery

occlusion

physical deformation

Figure 4.1: Relation between the template and the occluded observation.

While this relation is true when the observation is a perfect image of the template, in the

presence of occlusions this will not be valid anymore. Let us denote the occluded regions of

the observation by Focc (see Figure 4.1 for an example) [Sánta and Kato, 2014]. Then, we

can define an object level identity relation as:

A(Ft) = Fo ∪
∗ Focc ⇐⇒ Ft = A−1(Ft ∪

∗ Focc), (4.8)

where ∪∗ denotes the disjoint union of two sets (i.e. there are no overlaps between the sets).

Using these sets as domains in Equation (4.5) leads to the following system:

∫

A(Ft)

ωi(z̄) dz̄ =

∫

Fo∪∗Focc

ωi(ȳ) dȳ (4.9)

∫

Ft

ωi(x̄) dx̄ =

∫

A−1(Fo∪∗Focc)

ωi(p̄) dp̄, (4.10)

where i = 1, . . . , ℓ. For the sake of simplicity, we will assume that the ωi functions are acting

on the Cartesian coordinates of the points [Sánta and Kato, 2014]. Observe that for all

non-zero A affine transformations, the following equation is valid:

A−1(Fo ∪
∗ Focc) = A−1(Fo) ∪

∗ A−1(Focc) (4.11)

Substituting this observation into the integration domain of the systems from Equation (4.9)
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and Equation (4.10) and applying the basic properties of Lebesgue-integrals, we get:

∫

A(Ft)

ωi(z̄) dz̄ =

∫

Fo

ωi(ȳ) dȳ +

∫

Focc

ωi(ȳ
′) dȳ′ (4.12)

∫

Ft

ωi(x̄) dx̄ =

∫

A−1(Fo)

ωi(q̄) dq̄+

∫

A−1(Focc)

ωi(q̄
′) dq̄′ (4.13)

where i = 1, . . . , ℓ. Similarly to the affine framework proposed in [122], we use simple

power functions for the {ωi}
ℓ
i=1 set and choosing ℓ ≥ 6 yields an overdetermined system,

which is then solved in the least-squares sense [Sánta and Kato, 2014].

without regularization with regularization

Figure 4.2: The ambiguity of the proposed system of equations. Each image shows the
transformed observation and the occlusion denoted by black and red colors, respectively.

Within the proposed framework, several algebraically equivalent solutions are possible.

For example, a trivial solution is when all parameters of the transformation become zero and

the target shape will be the occlusion. Another example can be found in Figure 4.2. In order

to overcome this issue, the problem has to be regularized [Sánta and Kato, 2014]. Herein,

we use a simple regularization by restricting the size of the occluded areas to be minimal

and using Equation (4.13) yields the following problem:

∫

Ft

ωi(x̄) dx̄ =

∫

A−1(Fo)

ωi(q̄) dq̄+

∫

A−1(Focc)

ωi(q̄
′) dq̄′

such that |A−1(Focc)| → min i = 1, . . . , ℓ,

(4.14)

where |A−1(Focc)| denotes the area of A−1(Focc). Note that, for Equation (4.13) a similar

problem can be defined, which will be equivalent to Equation (4.14).

4.2.1 Calculating the Integrals Efficiently

Although the construction of Equation (4.14) is straightforward, similarly to the 3D case

discussed in Chapter 3, the computational efficiency strongly depends on the shape repre-

sentation and the chosen {ωi} sets. Since most of the suitable least-square solvers for the

current problem use iterative minimization techniques, we have to adjust the integration

domains and recompute the integrals for each iteration.

First, let us focus on the generation of the integration domains. Obviously, this process

is very time consuming with the classical pixel-based shape representation. In order to

overcome this difficulty, we will extract polygonal approximations of the contour of the

shapes with consistent vertex orders [Sánta and Kato, 2014]. Conventionally, vertices of

the outer contour are ordered counter-clockwise, while vertices of the holes are ordered

clockwise. A polygonal approximation can be easily extracted from the contour of each

shape by making use of the algorithm from [123]. Note that, this representation is a 2D

analogy for the closed triangular surfaces in 3D as presented in Chapter 3.
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Herein, we assume that a polygon P♦ corresponds to an ordered set of vertices, where

each pair of subsequent points is connected by a straight line segment. The polygon is closed,

thus the first and the last points are also connected. Each P♦ closed polygon defines a

continuous domain enclosed by its border which will be denoted by DP♦
. Let us denote the

polygonal approximations of the borders of Ft, Fo and Focc by T♦, O♦ and M♦, respectively.

Moreover, let us extend an affine transformation to a polygon as

A(P♦) = {Av̄ | v̄ ∈ P♦}. (4.15)

Once we have the polygonal representation of the input shapes, let us observe how to

calculate the polygonal approximation for borders of the shapes from Equation (4.11). For

each iteration of the solver, we get a candidate solution for A and the inverse A−1 can be

easily obtained by making use of

A−1 =







a22

|A|
−a12

|A|
a12a23−a13a22

|A|
−a21

|A|
a11

|A|
a13a21−a11a23

|A|
0 0 1






(4.16)

where aij , i = 1, . . . , 2, j = 1, . . . , 3 are the elements and |A| = a11a22 − a21a12 is the deter-

minant of A. Therefore, the polygonal approximation for A−1(Fo) can be easily obtained

by applying the A−1 to O♦ [Sánta and Kato, 2014]. Then from Equation (4.11) and the

right-hand side of Equation (4.8) we can obtain the polygon of the transformed occlusion by

making use of simple boolean operators

A−1(M♦) = T♦ \A−1(O♦), (4.17)

M♦ = A−1(O♦) \A(T♦), (4.18)

where \ denotes the relative complement operator between two polygons. This task can

be easily solved by the General Polygon Clipper (GPC) library [124]. Using the polynomial

approximations we have:

DT♦
≈ Ft

DO♦
≈ Fo

DM♦
≈ Focc.

Integrating power functions over polygons in 2D is similarly convenient as integrating

over triangular surfaces in 3D. Moreover, the computational complexity is also minimal due

to recursive formulas. Therefore the {ωi} can be defined as follows:

ωi(x̄) = xni

1 xmi

2 , (4.19)

where {(ni,mi)}
l
i=1 = {(a, b) | a+b = O} and O ∈ {0, . . . , Omax}. Substituting the polygonal

representation and the {ωi} set to the system from Equation (4.14) we get

∫

DT♦

xni

1 xmi

2 dx̄ =

∫

D
A−1(O♦)

y′ni

1 y′mi

2 dȳ′ +

∫

D
A−1(M♦)

z′ni

1 z′mi

2 dz̄′

such that |DA−1(M♦)| → min i = 1, . . . , ℓ.

(4.20)
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Note that, the integrals in Equation (4.20) are simple geometric moments of the do-

mains, which can be efficiently computed using the algorithm proposed in [125, 126].

Let us consider the approximating polygon as an ordered list of n vertices, denoted by

p̄1, p̄2, . . . , p̄n ∈ P♦. With each pair of adjacent vertices p̄i and p̄i+1 and using the origin of

the coordinates (0, 0), a set of triangles can be created. Let us denote the triangle created

from p̄i and p̄i+1 as P△
i and the continuous domain enclosed by this triangle as D△

i . Note

that, P△
i will be the triangle defined by p̄n, p̄1 and the origin. Using these notations, the

first integral of Equation (4.20) can be written as

∫

DT♦

xni

1 xmi

2 dȳ =

n
∑

j=1

∫

D△

j

Xni

1 Xmi

2 dX̄, (4.21)

and the other integrals similarly [Sánta and Kato, 2014]. According to [125, 126], the

moments of a triangle can be calculated exactly using the following formula

∫

D△

j

Xni

1 Xmi

2 dX̄ = |D△
j |

ni
∑

k=0

mi
∑

l=0

Ckl(ni,mi)u
k
ju

ni−k
j+1 vljv

mi−l
j+1 , (4.22)

where

Ckl(mi, ni) =
2ni!mi!(k + l)!(ni +mi − k − l)!

(ni − k)!(mi − l)!k!l!(ni +mi + 2)!
(4.23)

is a constant coefficient for each degree, (uj , vj) and (uj+1, vj+1) are the coordinates of p̄j

and p̄j+1, respectively, while |D△
j | denotes the area of the jth triangle [Sánta and Kato,

2014].

4.2.2 Numerical Implementation

In order to solve our system of equations, we have to deal with several numerical issues. Note

that the polygonal representation is only an approximation of a real object, thus the integrals

from Equation (4.20) are only approximately valid [Sánta and Kato, 2014]. Moreover, the

objects extracted from the images are subject to various segmentation errors which are not

explicitly modeled, thus they introduce additional errors in Equation (4.20). Fortunately, we

are able to handle these by using an overdetermined system.

Similarly to [122], we observed that the given framework is not robust against higher

rotations. To ensure the robustness against these local optima, the algorithm use a branch-

and-bound like optimization process, starting the estimation from several initial configura-

tions [122]. The optimizer stops after a few steps, then the main algorithm is initialized with

the best solution of the branch-and-bound phase. Since this particular problem is restricted

only to the rotational part of the transformation, the whole 360◦ angle interval is divided

into six 60◦ ranges [Sánta and Kato, 2014].

To achieve higher numerical stability, we also include equations from Equation (4.13).

Although it is mathematically redundant, numerically it has stabilizing effect on the solver.

With both systems involved, the problem from Equation (4.14) becomes

∫

DT♦

xni

1 xmi

2 dx̄ =

∫

D
A−1(O♦)

y′ni

1 y′mi

2 dȳ′ +

∫

D
A−1(M♦)

z′ni

1 z′mi

2 dz̄′

∫

DO♦

yni

1 ymi

2 dȳ =

∫

DA(T♦)

x′ni

1 x′mi

2 dx̄′ −

∫

DM♦

zni

1 zmi

2 dz̄

such that |DA(M♦)| → min i = 1, . . . , ℓ.

(4.24)
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Another interesting problem is the question of introducing the regularization term to the

system of equations? Since the system is solved in the least-square sense, the sum of squared

differences of the equations (i.e. the algebraic error) is minimized. With this consideration,

we construct a non-linear cost function from the algebraic error and the regularization term

as:

ℓ
∑

i=1

(

∫

DT♦

xni

1 xmi

2 dx̄−

∫

D
A−1(O♦)

y′ni

1 y′mi

2 dȳ′ −

∫

D
A−1(M♦)

z′ni

1 z′mi

2 dz̄′
)2

+

ℓ
∑

i=1

(

∫

DO♦

yni

1 ymi

2 dȳ −

∫

DA(T♦)

x′ni

1 x′mi

2 dx̄′ +

∫

DM♦

z′ni

1 z′mi

2 dz̄′
)2

+

λ|DA−1(M♦)|,

(4.25)

where λ is a non-zero weight, denoting the contribution of the regularization term to the

cost function [Sánta and Kato, 2014]. Although it is a very straightforward solution, the

output of the algorithm highly depends on the choice of the λ parameter. In order to reduce

the dependence on this value, we have to solve the problem differently.

Observe that, the problem can be reformalized as a constrained minimization problem

with non-linear constraints in the form of

min
A

|DA−1(M♦)| s. t.
∫

DT♦

xni

1 xmi

2 dx̄ =

∫

D
A−1(O♦)

y′ni

1 y′mi

2 dȳ′ +

∫

D
A−1(M♦)

z′ni

1 z′mi

2 dz̄′
(4.26)

where i = 1, . . . , ℓ. This scheme is not affected by the λ parameter, but the cost function has

many local optima, which makes the problem harder to solve. Therefore, in our numerical so-

lution, we combine the two formalisms by creating an alternating optimizer [Sánta and Kato,

2014]. In one iteration step of the optimizer, we minimize the cost function of Equa-

tion (4.25), then using the result as initialization we solve the minimization problem of

Equation (4.26). Unfortunately, we observed that these two problems could not be handled

efficiently with the same algorithm, since Equation (4.25) is a system of non-linear equations,

while Equation (4.26) is a minimization problem with non-linear constraints. That is why

we use the Levenberg-Marquardt algorithm for minimizing Equation (4.25) and the Sequen-

tial Quadratic Programming (SQP) algorithm to solve Equation (4.26). In each iteration

step of the alternating optimizer we run the Levenberg-Marquardt for 10 iterations, then the

Sequential Quadratic Programming (SQP) algorithm for 5 iterations (these numbers were

determined experimentally) [Sánta and Kato, 2014].

The integrals are computed efficiently using the formulas given in Section 4.2.1. One can

consider this alternating scheme as follows: in the first step we are looking for an algebraic

solution of a system of equations and in the second step a geometrical constraint is enforced.

This dual approach yields stable convergence and we found out experimentally that small

fluctuations in the value of λ do not affect the results (in our tests we were using λ = 3 for

all cases) [Sánta and Kato, 2013a].

Since the solution of the problem is based on iterative minimization, proper normalization

is critical for numerical stability. In this approach, following [7], we normalize both the

coordinates of the objects and the range of the ωi functions. The shapes are transformed into

the unit circle centered at the origin, yielding all coordinates to be in [−0.5, 0.5]. The range

of the ωi functions is normalized into [−1, 1], by making use the normalization constants
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from [7].

Algorithm 4.1 Pseudo code of the affine registration algorithm for occluded shapes
Input: template and observation objects
Output: The transformation parameters of A

1: Extract the polygonal approximations of the objects, then apply the normalization
from [7].

2: Construct the system of equations Equation (4.24).
3: Find a branch-and-bound initialization transformation.
4: while not converged do
5: Run the Levenberg-Marquardt algorithm for 10 iterations on minimizing Equa-

tion (4.25).
6: Run the Sequential Quadratic Programming (SQP) for 5 iterations on minimizing

Equation (4.26).
7: The optimizer is converged to a solution if the L2-distance of the current and the last

solution is smaller than a problem dependent threshold.
8: end while
9: Denormalizing the solution gives the parameters of the aligning transformation.

4.2.3 Experimental Results

In our experiments, a system of 9 equations has been generated using the formula ωi(x̄) =

xni

1 xmi

2 , where {(ni,mi)}
9
i=1 = {(a, b) | a + b = O} and O ∈ {0, . . . , 3}. The algorithm has

been implemented in MATLAB, except for the GPC library, which is called through a MEX

interface. The Levenberg Marquardt and Sequential Quadratic Programming (SQP) solvers are

used from MATLAB’s Optimization Toolbox. All tests have been run under a Linux system on

a virtualized Core i5 3.1 GHz architecture.

In order to quantitatively evaluate the performance of the proposed method, we have

tested the algorithm on 3000 synthetically generated shapes obtained from the homepage

of [127] (http://www.inf.u-szeged.hu/~kato/software/affbinregdemo.html). Ac-

cording to [127], these images have been generated with the following parameters: rotation

angle from [0◦, 350◦], shearing from [0, 1.2], scaling from [0.5, 1.9] and translation from

[−20, 20] pixels. The average resolution of the images is 1000× 1000.

For testing the behavior of the algorithm with occlusions, we used the following algorithm

to generate occluded observations: Choose a random point of the contour and add this point

to the border of the occlusion (initially this is empty). Iteratively, grow the occlusion by

adding the neighboring pixels of the current border, then update the border. The region

growing is stopped if the occlusion has achieved the desired size. The size of occlusion is

expressed in percentages of the size of the whole observation shape. We have tested our

algorithm with 0%, 10%, 20% and 30% of occlusions [Sánta and Kato, 2014].

We have also compared our results to two recent registration approaches the Bidirec-

tional Affine ICP (AICPBD) [44] and the Coherent Point Drift (CPD) [6] methods. The

implementation for AICPBD was obtained from the authors and CPD is publicly available

from https://sites.google.com/site/myronenko/research/cpd. Both of these imple-

mentations are in MATLAB using MEX subroutines implemented in C++, thus a runtime

comparison is inherently unfair with our approach. Still, CPD has achieved 70 seconds of

average CPU time, which is close to our average 90 seconds running times. The AICPBD,

however, heavily outperformed both approaches by obtaining a result in 2.4 seconds, on

average. For both competitive approaches, we gave the points of the contour as an input
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template observation proposed AICPBD CPD

Figure 4.3: Examples from the synthetic dataset. In the last three columns, we denote the
template shape with black and the alignment errors with gray colors.

and initialized them with the default parameters of the algorithms. We present our results

in Figure 4.4. The registration error has been quantitatively evaluated based on the Dice

coefficient of the aligned shapes (denoted by δ):

δ =
|Fr △ Ft|

|Fr|+ |Ft|
· 100%, (4.27)

where Ft and Fr are the sets of foreground pixels of the template and transformed perfect ob-

servation, respectively. Since for this dataset, the ground truth transformations are available,

we calculated the distance between the true A−1 and the estimated Â−1 transformations

based on all pixels of the perfect observation Fo:

ǫ =
1

|Fo|

∑

p̄∈Ft

‖(A−1 − Â−1)p̄‖ (4.28)

In Figure 4.4, the first row corresponds to the δ, while the second row to the ǫ measure.

The columns of Figure 4.4 show these error measures for various amount of occlusions

(0%, 10%, 20%, 30%, respectively). We found that a result with at most 5% δ error gives a

visually acceptable alignment. The plots of Figure 4.4 show that the performance of the

proposed approach stays under 5% for most of the test cases as long as the occlusion is below

20%. It is also clear that our method outperforms the two other algorithms in accuracy since

CPD and AICPBD are quickly reaching the 5% error limit already for 10% of occlusions. All

of the algorithms achieved poor results for 30% of occlusions (the last column of Figure 4.4).

The same behavior can be observed with the ǫ error (the second row of Figure 4.4). Summa-

rizing the results, the proposed approach gives good alignment as long as the occlusion is

below 20% and compares favorably to the two other algorithms [Sánta and Kato, 2014].

The algorithm has been tested on real images, too, and examples of the results can be

found in Figure 4.5. In a real application, occlusions could be static (caused by trees or

poles) and dynamic (caused by moving cars or walking people). In addition, if some of the

segmented shapes from the first image are missing on the second image, we can consider

the problem as an occlusion (e.g. the fourth row in Figure 4.5). All of these images have

been taken in urban environments and the shapes are subject to different types of occlu-

sions. The segmentations are created by classical thresholding and simple region growing

algorithms [Sánta and Kato, 2014].

Summarizing these tests, we can say that the algorithm works quite efficiently when the
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Figure 4.4: The quantitative results of 3000 synthetic test cases, comparing the proposed
approach to CPD [6] and AICPBD [44] algorithms. The diagrams in the first row show the
performance measured by δ and in the second row by the ǫ metrics. Each column is show-
ing results on the same amount of synthetically generated occlusion (0%, 10%, 20%, 30%,
respectively).

underlying deformation is affine or can be approximated by an affine transformation well,

as long as the size of occlusion is under 20%. In addition, the proposed approach can handle

shapes with higher perspective distortion (see the second column in Figure 4.5) and it is not

affected by moderate segmentation errors.

4.3 Non-rigid Registration of Covariant Functions

In the previous topic, we were focusing on using only geometric information to solve the

registration problem. While in many cases this is sufficient, there are problems where the

geometric information is not meaningful enough to give constraints on the solution. For an

example, see Figure 4.6, which implies that a particular template shape can have many differ-

ent observations which are identical as shapes but very different as images [Sánta and Kato,

2016b].

A convenient way to deal with such difficulties is to introduce more prior information

to the problem. When we are dealing with 2D images the simplest idea is to add intensity

information, if it is available. In our current topic, this raises two questions: does the

proposed algebraic framework could benefit from the availability of radiometric information

and how to integrate it into the system? In the following, we will investigate the answers to

these questions [Sánta and Kato, 2016b].

Let us assume that we have two intensity functions for the template and the observation

denoted by T : Ft ⊂ R
2 → R and O : Fo ⊂ R

2 → R, respectively. The simplest examples

for these functions are the grayscale intensity functions produced by an arbitrary image

acquisition device, but it is possible to use more sophisticated, artificially generated functions

too [128]. Assuming that the identity relation from Equation (4.1) holds and these functions

are covariant with respect to the ϕ transformation, we get the following [Sánta and Kato,
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template observation result

Figure 4.5: Results on real images. The first two columns contain the template and the
observation images, respectively with the contours of the segmented shapes. In the last
column, the results are visualized, where the contour of the template shape is denoted by
red, the contour of the transformed observation is denoted by green and the intersection is
denoted by yellow colors.

2016b]

T ◦ ϕ = O (4.29)

T (x) = O(ϕ(x)) = O(y). (4.30)

The first relation describes the covariance of the intensity functions, while the second one

implies that the functions are point-wise invariant in any pair of correspondences. At first,

this might look to be a contradiction, but let us clarify using Figure 4.7. In this figure, there is

a pair of regions, marked by the green and blue quadrilaterals. The corresponding intensity

functions defined over the regions are covariant since they are changed by the application of

the transformation. This relation is described by Equation (4.29).

However, if we take an arbitrary pair of corresponding points denoted by the centers of

green and blue circles, the intensity values in these points will be the same. This means that
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foreground extraction

foreground extraction

Figure 4.6: The ambiguity of shape-based registration. In this example, two different de-
formable transformations applied to the same template give very different observations, but
they have the same foreground region after segmentation.

Figure 4.7: Two covariant intensity functions defined by green and blue quadrilaterals. The
mapping between the regions is denoted by red.

the corresponding property is not affected by the transformation, therefore it is invariant

with respect to the deformation. This property is formalized in Equation (4.30) and it can be

utilized by the artificial generation of these functions. As an example, in [128] the covariant

functions are generated by estimating the Mahalanobis-distance between each point and the

centroids of the objects, which maps the points to an affine invariant value.

Once we have the covariant functions, we have to combine this information with the alge-

braic system [Sánta and Kato, 2016b]. One way is to integrate both sides of Equation (4.29)

and apply a set of non-linear functions {υi | υi : R → R}ℓi=1 to the intensity functions as

∫

Ft

υi(T (x))|Jϕ(x)| dx =

∫

Fo

υi(O(y)) dy. (4.31)

This type of equation has been used to recover a specific non-linear transformation model

having a linear Jacobian in [129]. The main advantage is that the above equations are

linear in the transformation parameters, hence it is computationally favorable. However,

in general, the Jacobian may not contain all transformation parameters (e.g. translation

parameters vanish in the Jacobian) or it may not be linear (e.g. in the case of the Thin
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Plate Splines (TPS) deformation model). If the transformation ϕ is linear, then the Jacobian

becomes constant. In such cases, [128, 130, 131] proposes to multiply Equation (4.30)

and Equation (4.1) yielding the following form of equations:

∫

Ft

ϕ(x) υi(T (x)) |Jϕ(x)| dx =

∫

Fo

y υi(O(y)) dy. (4.32)

The main disadvantage of this approach is that because of the υi functions have been directly

applied to the intensity functions, even a small amount of noise or model mismatch present

in the input grayscale values will greatly challenge parameter estimation [129, 131]. This

can be handled by adopting a template-, transformation-, and generator function-specific

noise model into the system, which can be learned from an appropriate training set [130,

131]. However, learning is not straightforward and the training set might not be available

for arbitrary applications.

An interesting variant of [131] has been proposed in [130]. Herein, the authors assume

that the range of the intensity function has been quantized into the {0, . . . , L} discrete set.

With this intensity function, the {υi} set is defined as follows

υi(z) =

{

1 z = i

0 otherwise
, (4.33)

where i = 1, . . . , L. This function set can be considered as a set of characteristic functions

for each intensity level, yielding L independent integration domains. The main advantage

of such representation is to be able to express the noise model as a probability transition

matrix [130]. However, this is one of its main drawbacks, too, because the functions move the

intensity degradations into the domain of the integrals which could lead to a very inaccurate

system.

In the current approach, our aim is to combine the robustness of the geometric approach

with the regularizing effect of the covariant functions [Sánta and Kato, 2016b]. This is

obtained by multiplying Equation (4.1) and Equation (4.30):

∫

Ft

ϕ(x) T (x) |Jϕ(x)| dx =

∫

Fo

y O(y) dy. (4.34)

Then, similarly to Equation (4.5), we will apply the {ωi} set to the image coordinates

∫

Ft

ωi(ϕ(x)) T (x) |Jϕ(x)| dx =

∫

Fo

ωi(y) O(y) dy, (4.35)

where i = 1, . . . , ℓ. This coupled system of equations is solved in the least-squares sense,

providing the parameters of the pursued transformation [Sánta and Kato, 2016b].

4.3.1 Numerical Implementation

Unlike to the method described in Section 4.2, herein we will work on pixel representation of

the images. In this representation, we have a finite number of pixels with their coordinates

and intensity values from the covariant functions. That means, the coordinates and the

range of the covariant functions are discretized, thus the equations from Equation (4.35) are

only approximately valid. In the current work, we use simple grayscale images where the

intensity values are coming from the [0, 255] interval. With this representation the integrals
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are approximated by finite sums over the pixels [Sánta and Kato, 2016b]:

∑

X∈FT

T̃ (X)ϕ1(X)piϕ2(X)qi |Jϕ(X)| ≈
∑

Y∈FO

Õ(Y)Y pi

1 Y qi
2 , (4.36)

where X,Y ∈ R
2 are the pixel coordinates; T̃ and Õ are the discretized intensity functions.

The system is then solved in the least-squares sense by iteratively minimizing the algebraic

error via the Levenberg-Marquardt algorithm. Similarly to the occluded case, the coordinates

are normalized into the unit square, and the range of ωi functions has been scaled into [−1, 1].

The former normalization is achieved by applying simple normalizing transformations ST

and SO for the foreground regions of the template and the observation, respectively. For

the latter one we used a set of constants {Ni}
ℓ
i=1 corresponding to the maximal magnitude

integrals over a zero centered disk with a radius
√
2
2 as described in [7]. Furthermore, the

range of the grayscale intensities has also been normalized into the (0, 1] interval by applying

the same scale factor for both images [Sánta and Kato, 2016b].

Applying the normalizations to Equation (4.36), we get the final form of our system:

|ST |

Ni

∑

X̂

T̃ (X̂)ϕ1(X̂)piϕ2(X̂)qi |Jϕ(X̂)| ≈
|SO|

Ni

∑

Ŷ

Õ(Ŷ) Ŷ pi

1 Ŷ qi
2 , (4.37)

where i = 1, . . . , ℓ and X̂ and Ŷ are the normalized image coordinates of the template

and observation, respectively. Note that, in order to apply the normalizations to the im-

age coordinates, we have to multiply each side by the determinant of the corresponding

normalizing transformation. This value corresponds to the Jacobian of the normalizing

transformation [Sánta and Kato, 2016b].

Our experiments have shown that the runtime of the algorithm can be reduced by solving

the problem with a coarse-to-fine hierarchical strategy [2]. In our implementation, we

use Gaussian image pyramids computed by the algorithm described in [132]. For each

level, we construct the system from Equation (4.37), then solve it using the outcome of the

previous level as initialization. On the first level, the algorithm is initialized with the identity

transformation [Sánta and Kato, 2016b].

In our experiments, we used affine and TPS transformations. Similarly to the 3D case

described in Section 3.2.2, the TPS transformation is defined using a set of control points

{ck}
K
k=1 ⊂ R2 and two sets of parameters: aij , wik ∈ R, where i = 1, 2, j = 1, . . . , 3

and k = 1, . . . ,K. ς is composed of two coordinate-wise transformation functions ς(x) =

[ς1(x), ς2(x)]
T in the form of

ςi(x) = ai1x1 + ai2x2 + ai3 +

K
∑

k=1

wikQ(‖x− ck‖), (4.38)

where i = 1, 2 and Q : R → R is the radial basis function defined in 2D as Q(r) = r2 log r2[7,

33]. The model has N = 2K + 6 parameters. Note that, the local parameters have to satisfy

the same additional constraints as described in Equation (3.16) for 3D.

Of course, the solution of Equation (4.37) will act between the normalized coordinates,

hence the result has to be denormalized to obtain the parameters of the transformation

acting between the original images. For the affine transformation, the denormalization can

be achieved by multiplying the obtained solution by ST and SO. However, since ST and

SO contain non-uniform scalings, the TPS model cannot be denormalized by scaling its
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parameters only, it will be a compound transformation:

ϕ(x) = S−1
O ◦ ς ◦ ST . (4.39)

The outline of the algorithm can be found in Algorithm 4.2. The computational complex-

ity of the proposed approach is linear in the size of the images, since the overall complexity

is O(L(C|FT | + |FO|)), where L denotes the number of levels in the Gaussian pyramid, C

denotes the number of function calls made by the Levenberg-Marquardt solver, |FT | and |FO|

correspond to the number of pixels in the input image regions [Sánta and Kato, 2016b].

Algorithm 4.2 Pseudo code of the 2D registration algorithm using covariant functions
Input: template and observation images
Output: The aligning transformation ϕ

1: Construct the Gaussian pyramids from the input images.
2: for each level of the pyramids do
3: Extract the pixel coordinates and intensity values.
4: Construct the system of equations Equation (4.37).
5: Solve the system in the least-squares sense by the Levenberg-Marquardt algorithm.

On the first level initialize the solver by the identity transformation and on each other
level use the solution from the previous one.

6: end for
7: Construct the final transformation as described in Section 4.3.1.

4.3.2 Experimental Results

In the following, we will summarize our experimental results with the covariant registration

algorithm. The main goal of these experiments was to present the capabilities of the algo-

rithm by registering pairs of synthetically generated and real images. The robustness of the

algorithm against image noise is also tested for both models. We compare our affine results

to the algebraic method proposed in [130] and for the deformable case, we compared our

results to the outcomes of two recent registration methods [11, 12]. Finally, for the TPS

model, we also study the significance of the control point positions.

The estimated transformations have been evaluated by the normalized cross correla-

tion [2]

NCC =

∑

x(FO(x)− FO)((FR(x)− FR))
√

∑

x(FO(x)− FO)2
√

∑

x(FR(x)− FR)2
(4.40)

and the normalized root-mean-square (RMS) distance

RMS =

√

√

√

√

1

n

∑

x

(

FO(x)− FR(x)

255

)2

(4.41)

between the intensities of the observation FO and the transformed template FR. FO and FR

denote the mean intensity value. We observed that the RMS metric is more sensitive to the

intensity differences, but the NCC metric is more meaningful to describe the results. Observ-

ing the results qualitatively, we found that a registration with NCC > 0.85 corresponds to a

visually acceptable, with NCC > 0.9 to a visually good and with NCC > 0.95 to a visually

excellent registration. For the affine results, we estimated the ǫ metric from Equation (4.28)

as well.
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The algorithm has been implemented in Matlab using a MEX interface for the ω function

calculation. We used the Levenberg-Marquardt implementation of Lourakis [108]. All tests

have been run on a regular laptop with Core i5 2.5 GHz architecture (the implementation

used only one processing core).

For the affine method, the integrals have been rearranged according to the scheme de-

scribed in [122]. Using this approach, the integrals over the pixel coordinates will become

independent from the parameters, therefore it could be precalculated. Hence, in each iter-

ation of the solver, we do not have to iterate through the pixels, which greatly reduces the

computational time.

Experiments with Affine Transformation

First, let us present our results on affine registration. Herein, the main aim was to show the

capabilities of the proposed approach with respect to the previous linear algebraic framework

published in [130].

In order to test the proposed approach, we generated a synthetic dataset containing 100

images. To obtain a deformed image we used randomly generated transformations applied

to a set of template images. The parameters of the affine transformation have been randomly

selected from uniform distribution according to the following rules: rotation from [0, 2π),

scale from [0.5, 1.5] and shear from [−1, 1]. For the image generation, we used nearest

neighbor and bicubic interpolations resulting in two different sets. In the following, we will

refer to these sets as affine_nearest and affine_bicubic, respectively. Emphasizing the

difference between the interpolation methods might seem to be unnecessary from the point

of view of a real application, but it will illustrate well the difference between the proposed

polynomial and linear [130] methods.
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Figure 4.8: A comparison between the proposed polynomial affine method and the lin-
ear model presented in [130]. The rows correspond to the affine_nearest and the
affine_bicubic datasets, respectively. The first two column show the NCC and the ǫ
metrics, respectively, and in the third, we compare the running times.

Our results on the synthetic test are presented in Figure 4.8. Unfortunately, for the linear

method there is no public implementation available, therefore we used own implementation

without any additional training applied. According to the experiments, the linear method

is very unstable, even a small deviation in the intensity values, caused by the different

interpolation methods, decreases the accuracy drastically. Observing the NCC values for

the bicubic set, each ”step” in the plot corresponds to a different template. This also confirms
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that the trained noise model should depend on particular template image [130]. Surprisingly,

the running times are nearly the same, although the linear approach is slightly faster as

expected.
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Figure 4.9: Robustness test results using affine transformation. The first two rows contain
plots of NCC and RMS metrics, while the last row show some examples from the dataset.

In practice, the input images are affected by various types of noise. In order to study the

behavior of the algorithm in the presence of Gaussian noise, we have created a dataset with

additive zero-mean noise. For noise generation, we used the variances σ2 ∈ {0.01, 0.05, 0.1}.

These values are corresponding to 15, 9, 5 dB signal-to-noise (SNR) ratios, respectively.

Note that, for generating the noisy images, we used the bicubic set only. Sample images

and results can be found in Figure 4.9. The plots clearly show that the algorithm provides

acceptable results as long as the SNR is higher than 9 dB.

Experiments with Thin Plate Spline Transformation

Similarly to the affine case, we used two randomly generated synthetic datasets, each of

them containing 250 images [Sánta and Kato, 2016b]. The TPS transformations have been

generated using the following procedure: First, we randomly sampled a set of initial control

point positions, then using random displacements we constructed interpolating thin plate

splines. As usual with TPS models, the generated transformations are required to preserve

the topology, thus the transformation has been rejected when its Jacobian was negative or

nearly zero. We used 15 and 25 control points for the first and second set, respectively. The

displacements have been generated as random samples from a zero mean normal distribution

with 15 pixels standard deviation. Some examples can be found in Figure 4.10. Hereafter,

we will refer to the first set as Set_15 and to the second set as Set_25.

In the first experiment of this block, the alignments have been estimated using the same

control point locations as for the generation. The results of this experiment are summarized

in Table 4.1. According to our bounds on the error metrics, the algorithm successfully

reconstructed the deformations for Set_15 (with 0.95 mean and median NCC values) and

achieved good results for Set_25 (with 0.91 mean and 0.90 median NCC values). This

difference is possibly caused by the radiometric distortions and sampling errors introduced

by the higher geometric distortion of the transformations [Sánta and Kato, 2016b]. We
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template observation DROP [11] SPECDEM [12] proposed (TPS)

Figure 4.10: Sample images from the synthetic datasets and comparison between DROP [11],
SPECDEM [12] and the proposed approach. For each row, the first two columns show
the template and observation, respectively. In subsequent columns, the results of DROP,
SPECDEM, and the proposed algorithms are presented as a combined RGB image: the red
channel contains the observation and the green channel contains the transformed template.

Set_15 Set_25 Overall

NCC
µ 0.95 0.91 0.93
m 0.95 0.90 0.93
σ 0.02 0.04 0.04

RMS
µ 0.08 0.11 0.09
m 0.08 0.11 0.09
σ 0.02 0.02 0.02

Runtime (sec)
µ 20.88 51.28 40.45
m 18.43 60.03 34.70
σ 5.63 26.26 27.28

Table 4.1: Results of the first experiment using the same numbers and locations for the
control points as for the generation. Quantitative evaluation is given in terms of NCC and
RMS metrics (µ – mean, m – median, σ – standard deviation)

used 21 and 31 ω functions for Set_15 and Set_25, respectively. The runtime was around

1 minute. Note that, for this experiment, we used only one level for the Gaussian pyramids,

because we experienced that for cases with lower number of control points, the algorithm

does not benefit from the additional levels.

In the next experiment, we tried three different grid configurations for the positions of

the control points. These grids contained 25, 49 and 100 points placed uniformly over the

bounding box of the template. For each configuration, we used 66, 114 and 216 ω functions.

Three levels have been used for the Gaussian pyramids which made our algorithm three

times faster for the 49 and 100 point grids, while remained the same for the 25 grid. The

summary of the experiments can be found in Figure 4.11.
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From these results, we can conclude that whenever the optimal control point locations

are unknown, the algorithm can solve the problem using a much finer grid. As an example,

for the generation of Set_15, we used 15 control points, however, it was necessary to use a

grid with 49 or 100 control points to obtain a visually good result. The algorithm achieved

better results on Set_15 than on Set_25, as excepted. However, increasing the number

of control points could also increase the precision of the algorithm, at the price of higher

computational complexity. None of the configurations could reach the level of accuracy we

obtained using the exact control point positions [Sánta and Kato, 2016b].
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Figure 4.11: The results of the control point placement test using 25, 49 and 100 points
placed on a uniform grid. The first row contains the results on Set_15 and the second for
Set_25. The columns show plots of the NCC, RMS, and runtime (in seconds) statistics.

We have also compared our method to two recent deformable registration algorithms the

Deformable Image Registration using Discrete Optimization (DROP) [11] and the Spectral

Demon’s Algorithm (SPECDEM) [12]. The implementations of these algorithms have been

provided by the authors. DROP uses a Markov Random Field formulation to describe the

registration problem as a minimal cost graph problem. The deformation is modeled using a

free-form deformation (FFD) model with discrete displacements. The SPECDEM approach is

based on the popular Log-Demons algorithm [50]. This approach aims to find diffeomorphic

point-wise correspondence between the images [12]. Each algorithm has been applied to

our synthetic dataset and initialized with their default parameters [Sánta and Kato, 2016b].

In Figure 4.12, we compared the accuracy and runtimes of the DROP and SPECDEM

algorithms with our best results using 100 control points, as well as with the results obtained

by using the exact control point locations. Note that, the transformation models used by

DROP and SPECDEM have much higher degrees of freedom than our TPS model. In spite

of this, both approaches achieved inferior results in terms of alignment accuracy. Remark

that, these approaches use a more general, non-parametric transformation model, while our

method works only with parametric deformation models. Therefore, [11, 12] would certainly

outperform our method when a parametric TPS model cannot be used. Unfortunately, DROP

had a pure C++ implementation only, hence runtime comparison was inherently unfair with

the other two algorithms. However, SPECDEM is implemented in Matlab/MEX similarly to

our approach. According to Figure 4.12, our algorithm was two times faster than SPECDEM

on this dataset.

The robustness of the TPS based algorithm has also been tested similarly to the affine

case. The results can be found in Figure 4.13. Just as in the affine case, the algorithm
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Figure 4.12: Comparative test results. Columns show plots of NCC, RMS, and runtime (in
seconds) statistics.

provides acceptable results as long as the SNR is higher than 9 dB.
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Figure 4.13: Robustness test results using TPS. The columns show plots for the NCC and
the RMS metrics, respectively.

Real Datasets In the following, we will present our results on cloth and paper deformations.

Many real applications, such as motion estimation, tracking or 3D reconstruction require

dense correspondence between the 2D observations of such types of objects [8, 9]. The

task is challenged not just by the non-linear geometric deformations, but by radiometric

deformations too, caused by e.g. inner shadows of the objects or changes in the illumination.

We tested our algorithm on two datasets. In the first dataset, we used photos taken from

shirts containing textured patterns [Sánta and Kato, 2016b]. Each shirt had an undistorted

and several distorted photos. The undistorted image served as the template, while the

distorted images were the observation. Before registration, the outlines of the patterns

have been segmented by simple color-based thresholding. For the registration, we used 100

control points placed on a uniform grid. The algorithm achieved promising results, despite of

the presence of higher radiometric deformations caused by the inner shadows of the material.

See the first row of Figure 4.14, for example. For the second dataset, we used the paper-

bend set from [9]. The proposed method achieved acceptable results on the textured paper

containing repetitive elements (see Figure 4.14). The average NCC and RMS values for

the shirt images were 0.938 and 0.045, respectively, and 0.904 and 0.092 for the paper bend

images [Sánta and Kato, 2016b].

4.4 Conclusion

In this chapter, we have addressed two challenges of registering 2D images with an algebraic

framework. First, we have proposed a novel algorithm in order to deal with higher occlusions

for affine deformations [Sánta and Kato, 2014]. The basic idea is to represent the shapes as
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Figure 4.14: Samples from the real experiments. The first two rows contain images of
shirts with textured patches. Each block contains three images: template, observation and an
overlay of the transformed template over the observation. The images have been acquired
with an ordinary camera. The last row shows samples from the bending paper dataset
obtained from [9]. The first column contains the template, then we show two different stages
of the bending with the observations and the overlay images.

polygons, then iteratively estimate the occluded regions using simple boolean operators while

solving a system of equations in the least-square sense. Our method compares favorably to

two recent registration algorithms [6, 44] and the algorithm has been tested on real images,

too.

Second, we have proposed an algorithm for non-rigid registration of image patches using

a similar algebraic framework [Sánta and Kato, 2016b]. The main aim is to handle covariant

functions, e.g. intensity information, to reduce the ambiguity of the deformable registration.

While any parametric model could be used within the framework, in this work we focused

on affine model for linear and TPS model for deformable registration. Experimental results

show the capabilities of the proposed approach both on synthetic and real images. Moreover,

the algorithm compares favorably to two recent state of the art methods published in [11]

and [12].

Further research aims to increase the robustness against radiometric deformations by

investigating the applicability of region-based descriptors. In the recent years, several dense

descriptors have been proposed for solving various related tasks, e.g. spectral methods [12],

or application specific descriptors obtained by learning methods [14]. The main benefit of

using such functions over the grayscale values is the robustness against the higher radiometric

deformations and the capability of handling multimodal cases [14]. Another interesting way

is to combine the proposed methods and increase the robustness of the covariant function

based algorithm against higher occlusions.





Chapter 5

Ad-hoc Mobile Camera Network

Calibration

In this chapter, we present a novel approach for calibrating ad-hoc camera networks, com-

posed of a set of smartphones with integrated cameras [Sánta and Kato, 2013b]. In the last

couple of years, smartphones have become very popular. Introduced as a new development

platform, yielded many new possible applications. The main advantages of smartphones are

the availability of a powerful embedded processor, networking capabilities and multiple types

of sensors (e.g. GPS, accelerometer, gyroscope). Using a set of mobile phones, a distributed,

highly scalable intelligent camera network can be created, which is desirable in many tasks

of vision based applications, like localization, reconstruction, object recognition and tracking

or HDR imaging of dynamic events. Many of these applications require a calibrated camera

system. The topic of calibrating camera networks have been reviewed in Section 2.2. In the

following, we will observe the applicability of these methods on this so called smart camera

network.

Since mobile phones typically have built-in fixed focus cameras, their intrinsic parameters

can be easily calibrated using various algorithms and simple calibration patterns [74] or self-

calibration approaches [75, 76]. Therefore, in this work, we will focus on the estimation of

extrinsic camera parameters (i.e. pose estimation) of such ad-hoc mobile camera networks.

Calibration of other types of (non ad-hoc) smart camera networks, which are typically

used in surveillance applications, has been studied in the literature. However, there are

substantial differences compared to ad-hoc mobile camera networks. First of all, surveillance

camera systems are designed with optimal coverage of a particular scene, hence the network

topology and individual camera positions in the 3D world are known a priori – at least with

a good approximation. Furthermore, such cameras have fixed position and orientation (or

known range of orientations in case of PTZ cameras), thus pose estimation can be solved dur-

ing installation by taking pictures of specific calibration targets. The main problems related

to the localization of multi-camera systems or vision based wireless sensor networks [79,

80, 133–136] are determining the neighboring cameras from the overlapping areas (e.g. via

vision graph construction [79, 80, 137, 138] or using sensor data), metric calibration and

pose estimation of the camera network [80, 134]. In such environments, these problems

have to be solved with limited computation and communication between the nodes, because

of the limited power supplies.

Smartphones are less limited and they also have better cameras, hence a wider range of

77
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algorithms can be used. In the case of ad-hoc camera networks, pose has to be estimated from

the actual images taken by the individual mobile cameras and special calibration patterns

are usually not available.

5.1 The Calibration Framework

The aim of the proposed method is to localize the network in a three-dimensional (3D)

scene with respect to a 3D structure [Sánta and Kato, 2013b]. In other words, the origin

of the estimated network will be attached to a well-defined 3D location. Since our initial

assumption excludes the availability of a calibration pattern, we also have to reconstruct

such structure using the camera images. A proper review on 3D reconstruction is far beyond

the scope of the current work, herein we will focus on the major tasks only.

The proposed approach has three main steps:

1. Estimation of the relative pose of the cameras within the network w.r.t. an arbitrary

main camera.

2. Computation of the absolute pose between the main camera and a 3D structure.

3. Estimation of the relative scale factors of the previous two coordinate systems yielding

a fully calibrated network w.r.t. the 3D scene.

The steps are visualized in Figure 5.1. Note that, the first two steps are independent, there-

fore, they could be estimated in parallel and synchronized only in the last step.

Figure 5.1: The proposed pipeline for camera network calibration.

In the following, we will assume that the method gets the initial network topology as a

vision graph from Equation (2.9). Establishing such structure in a mobile environment is also

an interesting topic. A recent method has been published in [81], where the vision graph is

constructed by combining visual and sensor information (e.g. GPS).
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5.1.1 Relative Pose of the Cameras Within the Network

The first step of the proposed method built on a standard relative pose estimation pipeline,

which is described in Section 2.2. As we mentioned above, we will choose an arbitrary main

camera, which will be the origin in the current phase. Since our method is distributed, we

can assume without loss of generality, that i = 1 is the main camera. Now, let us determine

the relative pose of the cameras w.r.t. a main camera [Sánta and Kato, 2013b].

According to the review from Section 2.2.1, this problem can be easily solved by esti-

mating the essential matrices acting between the main camera and the other cameras. For

that purpose, ASIFT [29] features are extracted by each mobile in a distributed, parallel

manner, and then the descriptors are sent to the main camera, which subsequently computes

correspondences and estimates the essential matrices [Sánta and Kato, 2013b]. The neces-

sary amount of communication depends on the size of the adopted descriptor, it is typically

between 64 and 128 for ASIFT features. Thus Mi extracted descriptors yields O(MiC) bytes

communication for the ith camera, where C is the size of a descriptor vector. In our experi-

ments, Mi was at most 500 and C = 64. Each packet has to be sent only once to the main

camera [Sánta and Kato, 2013b]. Of course, the size of a packet could be reduced using

compression methods described in [79, 80, 138], but this is beyond the scope of the current

work.

Since the intrinsic parameters of the cameras are known, we send the normalized coor-

dinates of the extracted feature point coordinates as K−1
i x̄i

j . Following the review in Sec-

tion 2.2.1, the essential matrix Ei ∈ R
3×3 can be determined by several methods. In the

current work, we use the Normalized 8-point algorithm taking into account that Ei is rank 2

with two identical singular values [72] satisfying

x̂iTEix̂ = 0, (5.1)

for all corresponding normalized point pairs x̄ of the main camera and x̄i of the ith camera.

Recall that, the main advantage of this method over other approaches is that it returns only

one solution for the essential matrix. However, we have to use at least 8 point correspon-

dences [Sánta and Kato, 2013b].

Assuming that the main camera matrix is of a canonical form P̂1 = [I | 0], the other

(normalized) camera matrices can be determined from the essential matrices [72]:

P̂i = [Ri | Riti] i = 2, . . . , N, (5.2)

where Ri ∈ SO(3) is the relative rotation and ti ∈ R
3 is the relative translation of the camera

Pi w.r.t. P1.

Once we have the pair-wise relative poses, we can reconstruct several 3D points by tri-

angulating the extracted landmarks for each pairs of cameras. One of the most convenient

measures for describing the accuracy of an extracted camera pose is the reprojection error

of the triangulated points, estimated as the Euclidean distance between the original and the

reprojected landmark positions. While it is necessary for a good pose to have a minimal

reprojection error, the landmark based measurements are usually challenged by the inaccu-

racy and matching ambiguities of the landmark extraction process. For this particular case,

it means that a small reprojection value does not correspond to a good pose, although it

can be used to eliminate the trivially inferior results. In the current approach, an upper

bound has been given for the maximal acceptable reprojection error and the landmarks have
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been filtered accordingly. In our experiments, we used a 10 pixels limit. If the number of

acceptable landmarks is smaller than 11, the pose has been marked as bad. This threshold

corresponds to the minimal number of points for a simple bundle adjustment, considering

two cameras only.

Now, each camera is calibrated w.r.t. the main camera P1, but all of them is determined

up to a unique scale [Sánta and Kato, 2013b]. To make these scale factors consistent, we

will determine the relative scale between each camera pair (P̂1, P̂i), i = 2, . . . , N , by making

use of the Two point algorithm described in Section 2.2.2. Herein, the cameras are added

iteratively to the network, while we estimate the relative scales using triangulated pairs of

points [73]. The estimation is based on the formula from Equation (2.14). Note that using

this method we need correspondences from three cameras only to estimate the scale factor

of any camera in the network [Sánta and Kato, 2013b].

The last step is bundle adjustment [72], which simultaneously refines camera parameters

and 3D point coordinates by minimizing the overall reprojection error of the reconstructed

3D points:

min
X̄i

j ,Pi

N
∑

i=1

ni
∑

j=1

‖PiX̄
i
j − x̄i

j‖
2, (5.3)

where PiX̄
i
j is the back projection of X̄i

j in the ith camera, while x̄i
j denotes the true pixel

coordinates. For further information, please refer to Section 2.2.3. Scale estimation and

bundle adjustment are computed in the main mobile only, thus there is no communication

in these steps [Sánta and Kato, 2013b].

5.1.2 Localizing the Camera Network in the 3D Scene

In the following, we will investigate how to relate the camera network to the 3D scene.

According to our initial assumption 3D structures are not available at beginning of the

pipeline, therefore we have to reconstruct one or more element of the 3D scene first. After

that, the world coordinate system could be attached to any of those structures.

In general, we need at least two calibrated cameras to obtain a metric reconstruction of

3D objects [72]. Then using reliable geometric correspondences between the camera images;

points, planes or even complex surfaces can be reconstructed [139]. Since the camera

network has been calibrated in the previous step, we only have to deal with establishing of

geometric correspondences. The point-wise correspondences used for camera calibration

could be good candidates for such task, however attaching the origin of the coordinate system

to a single point makes the calibration unreliable and introduces accuracy problems as well.

Moreover, since a single point does not have any orientation, we have to choose additional

points to give the major axes of the system, which makes the whole process more ambiguous.

Using planes instead of points, however, leads to a more stable approach. A plane

inherently defines two of the three major axes and from the projected patches in the camera

images very accurate geometric correspondences could be obtained via affine or projective

homographies. Such homographies established by using 3 or 4 coplanar feature points (for

affine and projective transformations, respectively) [72] or by making use of a patch based

registration algorithm as discussed in Chapter 4. However, these approaches both assume

the availability of reliable point- or patch-wise correspondences between the camera images,

which is hard to extract in a highly repetitive, urban environment (e.g. flats, windows, brick

walls, see Figure 5.3). This ambiguity caused by the regular structures is a great challenge
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for classic registration methods, therefore we present a new approach, where the regularity

is handled as an advantage instead of a drawback.

First of all, in this special case it is possible to obtain 3D structures by using one camera

only [140–142]. This is achieved through handling the repetitive patterns as Transform

Invariant Low-rank Texture (TILT) patches [142].

Let us consider a 2D texture as a function I0(x1, x2) : R
2 → R. According to the formal

definition from [142], I0 is low-rank if the family of one-dimensional function {I0(x1, z) |

z ∈ R} spans a finite low-dimensional linear subspace as

dim(span{I0(x1, z) | z ∈ R}) ≤ k, (5.4)

where k is a small positive integer. In practice, we are dealing with discrete images, thus the

I0 texture is sampled on a finite discrete grid of size m× n, which could be considered as a

matrix with real values [142]. Therefore, the formal definition can be interpreted as

rank(I0) ≤ k ≪ min(m,n), (5.5)

where I0 is the discretized matrix.

In most cases, we observe a transformed version of I′, e.g. in our case, it will be deformed

by a projective homography. Let us denote the discrete image of I′ in the ith camera as Ii.

Hence, there is a Hi planar homography, which aligns I0 to Ii as

Ii = Hi(I0). (5.6)

In practice, image patches could be challenged by various types of noise and degradations,

thus Equation (5.6) might not be true. The degradations could be expressed as a matrix

addition:

Ii = Hi(I0) + Si, (5.7)

where Si contains all differences between the true and the projected low-rank patch. As long

as Si is sparse, we can reconstruct I0 from Ii by solving the following problem [142]

min
I0,Si,Hi

rank(I0) + γ‖Si‖0 s. t. H−1
i (Ii) = I0 + Si. (5.8)

Such robust rank minimization problem could be solved by making use of the Augmented

Lagrange Multipliers (ALM) method as described in [142]. Using the extracted elements, we

can define a TILT feature as

T = (Ii,Hi,Si), (5.9)

where Ii is the deformed patch in camera i, while Hi and Si denote the extracted homogra-

phy and sparse error matrices, respectively. Once a TILT feature is extracted, we can easily

relate the camera i w.r.t. I0. In the current approach, we use I0 as the 3D structure for the

origin of the final coordinate system [Sánta and Kato, 2013b].

Using these results, the second step of the pipeline will have the following sub-steps:

1. Extract a low-rank candidate patch from the image of the main camera.

2. Apply the TILT algorithm from [142] to establish a TILT feature in form of Equa-

tion (5.9).

3. Relate the main camera using the extracted homography.
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Since the steps are executed only in the main mobile, there is no need for communication.

However, the scale of the extracted coordinate system will be independent from the scale

of the network’s coordinate system, thus we have to synchronize them in a subsequent

step. In the following, we will refer to the currently estimated system as plane coordinate

system. While Step 2 is straightforward, Step 1 and 3 need further elaboration. In the current

approach, we select the low-rank candidate patch by user interaction (selecting its bounding

box). While it is adequate for our experiments, we have to mention that automatic detection

of repetitive and/or symmetric patterns is also possible [141, 143].

In Step 3, we assume that the world coordinate system is attached to the top left corner

of I0 and it corresponds to the Z = 0 plane. This means that the relative pose of P1 can be

factorized from the extracted H1 homography by making use of a method from Sturm [144].

Since all points in I0 has Z = 0 third coordinate, the planar homography H1 is composed

(up to scale) from the relative camera matrix as

H1 = K1[R3×2 | Rt], (5.10)

where R and t are the relative pose of P1 w.r.t. I0. Since K1 is known, we can write:

M = K−1
1 H1, (5.11)

from which the first two columns of the rotation matrix R can be factorized using Singular

Value Decomposition [144]: Get the SVD decomposition of the first two columns of M, as

M3×2 = U3×2Σ2×2V
T
2×3. Then the first two columns are R3×2 = UVT . The third column

of R is the cross product of the first two columns because R is orthonormal. Finally, the

relative position t will be the third column of αRTM, where

α =
trace(RT

3×2M3×2)

trace(MT
3×2M3×2)

, (5.12)

and trace(An×n) =
∑n

i=1 aii is the simple matrix trace [144].

5.1.3 Registering the Camera Network with the Extracted Plane

In the previous sections, the relative pose of the main camera, as well as the camera network

pose, is determined up to a free scale factor independently, hence they are not guaranteed

to be in the same scale. The last step of our algorithm is to determine the relative scale of

the plane coordinate system with respect to the network coordinate system. Combining the

extracted elements will provide a consistent calibration of the camera network in the world

coordinate frame, where the origin is attached to a 3D plane.

The task could be formalized as a pattern matching problem, where the aim is to locate

a template patch in one or more images. As discussed above, the degrees of freedom of such

problems and the repetitive nature of TILT features make practically impossible to solve the

problem in general [141].

Fortunately, the space of possible transformations can be reduced by making use of the

extracted homography of the TILT features. In [141], the pattern matching problem is de-

scribed as determination of four parameters (two translation and two scaling values). This

is achieved by first extracting a set of TILT features in each input image. Then, after merg-

ing the coplanar regions, each remaining patch and camera image are rectified using the
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extracted homographies. The rectification eliminates the possible rotations, skewing and per-

spective distortions, thus we only have to deal with translation and scaling. The parameters

are obtained by maximizing the normalized cross correlation between the rectified images

and the transformed patch [141]. While this approach relies only on the TILT features, the

repetitive nature of the features could lead to false matchings. Nevertheless, the rectification

of the whole camera images can be impractical on a mobile device.

Further reductions can be achieved if we assume the availability of the camera poses. In

such case, the problem reduces only to find a single parameter [Sánta and Kato, 2013b].

Intuitively, this parameter describes the distance between the main camera and the rectified

plane w.r.t. the coordinate system of the camera network. Let us assume that, we determined

a TILT feature T = (I1,H1,E1) in the image of P1, where H1 is a planar homography

between I1 and I0. The aim is to find Ik, which will be the projection of I0 in the image of

Pk by estimating the relative scale of H1 [Sánta and Kato, 2013b].
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Figure 5.2: Illustration of the scale estimation.

Observe that, due to the homogeneous division for all β 6= 0 value

I1 = H1(I0) = βH1(I0). (5.13)

This equation describes the scale ambiguity of the perspective projections, which is caused

by the unknown physical size of I0. However, when two cameras are available the behavior

of the β scale factor can be measured in the second camera, as Figure 5.2 shows it. Consider

a fixed point x̄ of I1, e.g. the centroid of the low-rank pattern, which is projected back to

a 3D point H−1
1 x̄. Intuitively, β will be a scale along this projection ray [Sánta and Kato,

2013b]. In the camera Pk, the image of this ray will be the epipolar line l′ corresponding to x̄,

therefore, according to the epipolar constraint, the image of the 3D point H−1
1 x̄ in Pk must

be on l′. Changing β will move this image point along l′ (see Figure 5.13) [Sánta and Kato,

2013b].

Let us denote the homography acting between I0 and Pk by Hk. Since Pk sees the same

I0 pattern as P1, there is only one β for which ȳ = HkβH
−1
1 x also holds. Since Hk is not

available, further investigation is needed to estimate the pursued scale factor. According to
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the initial assumption, we have the relative pose between the P1 and Pk as

P̂1 = [I | 0] P̂k = [Rk | tk]. (5.14)

Moreover, the relative pose of P1 w.r.t. I0 is also available using Equation (5.10):

P̂1 = [R1 | R1βt1]. (5.15)

Observe that, the β parameter acts only on the translational part. Combining these two

equations, the relative pose of Pk w.r.t. I0 can be written as

P̂
β
k = Rk[R1 | (

1

β
tk +R1t1)]. (5.16)

Using P
β
k , the planar homography from I0 to the image plane of the kth camera can be

written as

H
β
k = Kk[(RkR1)3×2 |

1

β
Rktk +RkR1t1]. (5.17)

Finally, the planar homography from the first to the kth camera is Hβ
1→k = HkH

−1
1 .

In order to find the β scale factor, we can simply use a similarity metric based registration

method [2], e.g. minimization of mutual information. We can also estimate the possible

bounds of β based on the fact that transformed bounding box of I1 to Ik has to fall within

the image frame of Pk. Making use of this interval, we can easily initialize and speed up

registration via a branch-and-bound algorithm: initially, the whole interval is a candidate

interval. Then divide the candidate interval into smaller sub-intervals and the similarity

metric is computed for each sub-interval centroid as a candidate β value. Then the procedure

continues iteratively with the sub-interval giving the best alignment [Sánta and Kato, 2013b].

The algorithm runs on the mobile of Pk, hence the extracted low-rank pattern I1 (in our

experiments, it was at most 256× 256 pixels) and the necessary matrices H1 and P1 have to

be sent at the beginning by the main camera. After the estimation, the extracted β is sent

back by the kth mobile. To achieve greater stability, the scale factor estimation can be solved

simultaneously for all cameras seeing the pattern I0. The median of these estimated scale

factors is taken to filter out potential outliers and errors [Sánta and Kato, 2013b].

Algorithm 5.1 Pseudo code of the calibration framework.
Input: N images and internal calibration matrices Ki from N cameras
Output: The Pi camera matrices calibrated to the scene

1: Choose a main camera, P1.
2: Calibrate all cameras to P1by estimating essential matrices and relative scale factors λi

as described in Section 5.1.1.
3: Determine the planar homography to a low-rank pattern I0 seen by the main camera as

described in Section 5.1.2.
4: Synchronize the scales of the homography and the calibrated camera system estimated

in the previous two steps using the method of Section 5.1.3.

5.2 Experimental Results

In order to quantitatively evaluate the performance of the proposed method, a synthetic

dataset of 1230 test cases has been created. Each case contains five cameras with randomly
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Figure 5.3: Sample low-rank patterns from the database.

generated positions and randomly created calibration matrices (of course with overlapping

views), and the cameras took a virtual picture of a 3D plane containing a low-rank pattern

chosen randomly from a database of 31 patterns (examples can be found in Figure 5.3).

A randomly generated point set has also been coded into these images to simulate point

correspondences. Camera parameters were randomly chosen according to the following

rules: for intrinsics, the focal length is chosen from [1000; 1300] with zero skew and a principal

point set to the image center; for extrinsics, rotation angles were between [−π/4;π/4], and

the translation was between [−10; 10] meters (corresponding to typical imaging conditions

in urban areas). Some test cases can be found in Figure 5.4.

Figure 5.4: Images from the synthetic tests. For each row, the first five pictures show the
images of the low-rank pattern as seen by the random cameras, while the last one contains
the overlayed reprojected frames using the estimated camera matrices.

The algorithms were implemented in MATLAB. The TILT problem solver for the

low-rank pattern alignment was obtained from http://perception.csl.illinois.edu/

matrix-rank/tilt.html. Using this library, an affine alignment has been estimated, then

used as an initialization to the homography solver. For the Normalized 8-point algorithm, the

RANSAC [35] version of the algorithm implementation of [145] has been used. For bundle

adjustment, we used a modified version of Generic Sparse Bundle Adjustment from Lourakis
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et al. [87], written in C++. Finally, for the homography scale estimation in Section 5.1.3, we

used a simple mutual information based registration algorithm using the internal solvers of

MATLAB [2].
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Figure 5.5: Quantitative results of rotation angle estimation.
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Figure 5.6: The camera position error and reprojection error of the centroid of the low-rank
pattern.

Runtime (sec)

TILT Solver 8-point algorithm
Bundle

adjustment
Homography
registration

m 2.83 0.093 0.40 4.17
µ 3.14 0.10 0.41 7.75
σ 1.31 0.03 0.12 68.14

Table 5.1: Runtime statistics on the synthetic images (m – median, µ – mean and σ – standard
deviation).

Quantitative results on the synthetic dataset can be found in Figure 5.5 and Figure 5.6.

The first diagram of Figure 5.5 contains the error of the yaw angle (rotation around the

z-axis), the second contains the error of the pitch angle (rotation around the y-axis) and the

third diagram shows the error of the roll angle (rotation around the x-axis). For the majority

of the test cases, the difference is below 2 degrees. Figure 5.6 shows the camera position

error and the reprojection error of the centroid of the low-rank pattern. The position error

is computed as the Euclidean distance of the estimated and the original camera positions,

and the error in the plot is given in percentages with respect to the original camera distance.

Considering that translation is of the order of several meters, the actual error for almost all of

the test cases was a few centimeters only. Since all of the frames contained the same low-rank

plane in the synthetic tests, we could compute the reprojection error for each camera using

the H1→i (i = 2, . . . , N) homographies. The reprojection error is defined as the distance
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between the true and the projected centroids of the planes. Note that, the reprojection error

is always 0 for the first camera. The running time of our algorithm can be found in Table 5.1.

As we mentioned in Section 5.1.3, the homography scale factor β can be determined

simultaneously from all cameras seeing the low-rank pattern. As expected, scale estimation

became more stable (deviation and average of the errors are considerably lower) when the

median of these estimated scales was taken. We show the average gain of using this variant

of the algorithm in Table 5.2, where the values were calculated as the average differences

for each camera. However, the main advantage of this approach is its robustness against

occlusions, which is quite common in real-life situations (see e.g. the third image set in

Figure 5.8).

Reprojection error (pixels) Relative distance (%)
m 1.03 0.12%
µ 27.85 2.47%
σ 54.17 4.46%

Table 5.2: The average gain of solving the homography scale estimation for all cameras (m –
median, µ – mean and σ – standard deviation).
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Figure 5.7: Stability test with varying main cameras. Each plot shows the average of absolute
distances from the medians of each configurations.

Another interesting topic is the robustness of the algorithm when the main camera is

changed. Since our approach is distributed, the choice of the main camera should be arbitrary,

and the calibration results must not be influenced by this choice. Figure 5.7 shows how the

algorithm behaves within a particular network of five cameras when the main camera is

changed. The plots show the average of absolute distances from the medians for each main

camera configurations. The charts for each case are running together and errors are low,

showing that calibration results are not affected seriously by the choice of the main camera.

Of course, the middle camera is usually the best choice, as it minimizes the distortion with

the other cameras.
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Figure 5.8: Results on real images. For every test case, the last image shows the overlayed
back projected camera images using the estimated camera matrices. The low-rank patterns
used for calibration are marked on the main camera image as well as on the result.

5.2.1 Results on Real Data

The proposed method has been tested on real images as well. The photos have been taken in

urban environment by five different smartphones. The point correspondences were extracted

using ASIFT [27] features and the bounding boxes of low-rank pattern were picked by hand.

The main camera was always the central camera for these test cases. Our results on this

dataset can be found in Figure 5.8. The first three sets show good calibrations, while the

last row presents a less precise estimate, which is mainly due to the errors in establishing

point-wise correspondences.

Usually, a real scene contains low-rank patterns repetitively (see Figure 5.8 for examples),

and as we described above, the matching of these patterns with conventional methods is

quite difficult. The homography scale estimator proposed in Section 5.1.3 proved to be quite

robust, which is a major advantage of our solution.
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5.3 Conclusion and Future Work

A camera network pose estimation algorithm is proposed, which was inspired by the recent

works on low-rank rectification. First, the relative pose of the camera network is determined,

then the relative pose to a real 3D plane with a low-rank pattern is estimated. The calibration

algorithm is designed in a distributed way: each mobile is processing its own image and

sends only the minimum amount of data towards other mobiles. Although, for many steps

of the algorithm it is necessarily to pick a main camera, the choice of this particular camera

is arbitrary and has no major influence on the quality of the final estimates. Robustness

and stability of the algorithm have been tested on a large synthetic dataset as well as on

real images taken in urban environments. While the presented results are encouraging,

we see several points where the algorithm could be further improved, e.g. investigate the

possibilities of automatic detection of the low-rank patterns, or increase the accuracy of the

homography estimator.





Chapter 6

Conclusions

This thesis work summarized the author’s research on various topics of computer vision.

These are all related to image registration, which is a particularly interesting problem in

itself. Unfortunately, many of the gold standard techniques rely on heuristic assumptions

or manual interactions. Automatized approaches, however, are able to reduce the overall

time consumption and increase the accuracy. The presented research intended to increase

automation in the observed areas by developing new ideas and algorithms.

The first topic addressed a novel registration framework for aligning 3D objects without

established point-wise correspondences. The basic idea is to set up a system of non-linear

equations which solution directly provides the parameters of the aligning transformation

modeled by a parametric transformation model. The framework has successfully utilized the

advantages of various 3D data representations, such as volumetric images and triangular

surface meshes. The efficiency and the robustness of the proposed approach have been

demonstrated on large synthetic and real datasets. Our method compares favorably to two

recent 3D matching algorithms [5, 6].

In the next topic, we have addressed two challenges of registering images using the 2D

variant of the algebraic framework from the previous chapter. First, we have proposed a novel

algorithm in order to deal with higher occlusions for affine deformations. The basic idea is to

represent the shapes as polygons, then iteratively estimate the occluded regions using simple

boolean operators and solve a system of non-linear equations in the least-squares sense.

The robustness against higher segmentation error has been validated on a large synthetic

dataset, and the method outperformed two recent registration algorithms [6, 44] in terms

of alignment accuracy.

Thereafter, we have proposed an algorithm for deformable registration of image patches

using the same framework. The main aim is to handle covariant functions, e.g. intensity

information, to reduce the ambiguity of binary registration. While any parametric model

could be used within the framework, we focused on affine and TPS models in this work.

Experimental results show the capabilities of the proposed approach both on synthetic and

real images. The presented polynomial equation based approach compares favorably to the

linear one published in [130]. For elastic deformations, the proposal has surpassed two state

of the art methods published in [11] and [12].

Finally, a camera pose estimation algorithm is proposed which was inspired by the recent

works on low-rank texture rectification. First, the relative pose of the camera network is

determined, then the relative pose to a real 3D plane with a low-rank pattern is estimated.

The calibration algorithm is designed in a distributed way: each mobile is processing its
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own image and sends only the minimum amount of data towards other mobiles. Although,

for many steps of the algorithm it is necessary to pick a main camera, the choice of this

particular camera is arbitrary and has no major influence on the quality of final estimates.

The robustness and stability of the algorithm have been tested on a large synthetic dataset

as well as on real images taken in urban environments.



Appendix A

Summary in English

Computer vision is a field of analyzing and interpreting visual objects by making use of

various computational tools. The fundamental aim is to create automatized systems to

efficiently handle multiple tasks. In almost every computer vision process an important

preparatory step is image registration, which is a particularly interesting problem in itself.

The main goal of this task is to estimate mappings between different observations of the same

scene. Unfortunately, many of the gold standard techniques rely on heuristic assumptions or

manual interactions. On the contrary, automatized approaches are able to reduce the overall

time consumption and increase the accuracy. This work presents my research on developing

solutions for various problems of image registration.

A.1 Key Points of the Thesis

In the following, I summarized my results into two main thesis groups. In the first one, I

present my findings on registering 3D objects, while in the second one my results on 2D

shape registration are shown. In Table A.1, the connections between the thesis points and

the corresponding publications are displayed.

I.) Registration of 3D Objects

Inspired by the already published 2D registration framework [7], the method can be

extended for registering 3D objects. The basic idea is to set up a system of non-linear

equations whose solution directly provides the parameters of the aligning transforma-

tion modeled by a parametric transformation model.

(a) When considering general 3D surfaces as input objects, the basic integrals of the

equations will be surface integrals. I derived two recursive numerical schemes (an

exact and an approximate) to efficiently estimate surface integrals over triangular

surface meshes. I tested the proposed framework on a large synthetic dataset

using thin plate spline (TPS) transformation model. I empirically verified the

robustness of the method against segmentation errors and compared the results

to two recent registration framework [5, 6]. Finally, I showed practical application

of the method for aligning 3D facial scans.

(b) Registering 3D volumetric objects can be realized by making use of volumetric

integrals as well. For this purpose, I investigated two object representations: a
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voxel based and a closed triangular surface based approach. For voxel represen-

tation, following the theoretical result from [7], I derived an efficient numerical

scheme for estimating the integrals in the case of polynomial transformations. For

triangular surface mesh representation, following the general surface approach,

I gave an efficient numerical scheme based on tetrahedrons in the case of TPS

transformations. I demonstrated the efficiency of the methods on a large synthetic

dataset. I made experiments to verify the robustness of the methods against seg-

mentation errors and model overfitting. I showed practical applications of the

method for registering lung CT scans and brain surfaces.

II.) Registration of 2D Shapes

This thesis group summarize my results on registering binary and grayscale images.

In the first topic, I dealt with the alignment of occluded binary shapes, which is a

common problem for registering images taken in less controlled environments. In

the second topic, I dealt with the ambiguity of the inner parts of shapes, when they

are registered using non-rigid transformation models with higher degrees of freedom.

Finally, I developed a method for calibrating ad-hoc camera networks.

(a) The affine registration methods for binary shapes published in [122, 127] can

be adapted to handle occluded shapes by appropriately choosing the integration

domains. In the proposed approach, I represented the shapes as polygons and

determined iteratively the occluded areas. Then, using these areas as integration

domains, I estimated the best affine transformation between the shapes. I demon-

strated the efficiency of the method on a large synthetic dataset. I compared the

results to two recent registration methods [6, 44]. I showed practical applicabil-

ity of the method on images taken in urban environments containing static and

dynamic occlusions.

(b) The general framework from [7] can be further regularized by making use of

grayscale images. For this purpose, I developed a formalism, where the geometric

and intensity information are used in a coupled system of equations. I verified

empirically the efficiency of the method on a large synthetic dataset. I showed

experimentally the robustness of the method against additive zero-mean Gaussian

noise. I compared the results to two recent registration method [11, 12]. Finally,

I showed practical applicability of the framework on real images and on a public

dataset.

(c) Recent results on Transform Invariant Low-rank Textures (TILT) [142] can be

used for calibrating camera networks. I developed an algorithm which is able

to determine the absolute pose of a camera network by making use of planar

homographies extracted from TILT features. I verified the efficiency and stability

of the proposed method on a large synthetic dataset and real images taken with

mobile cameras.
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[Sánta and Kato, 2012a] •
[Sánta and Kato, 2012b] •
[Sánta and Kato, 2013a] •
[Sánta and Kato, 2016a] •
[Sánta and Kato, 2018] • •
[Sánta and Kato, 2014] •

[Sánta and Kato, 2016b] •
[Sánta and Kato, 2013b] •

Table A.1: The connection between the thesis points and publications.





Appendix B

Summary in Hungarian

A számítógépes látás témakörében vizuális objektumok számítógépes értelmezésével és vizs-

gálatával foglalkozunk. A cél olyan automatizált rendszerek kidolgozása amelyek képesek

hatékonyan megvalósítani az élőlények vizuális érzékelését. A legtöbb számítógépes látás-

beli problémában egy fontos előkészítő lépés a képregisztráció, amely önmagában is érdekes

terület. Itt a fő célunk, hogy leképzéseket határozzunk meg az aktuálisan vizsgált színtér kü-

lönböző megfigyelései között. Sajnos a jelenleg alkalmazott eljárások nagyban támaszkodnak

különböző heurisztikákra és emberi interakcióra. Ezzel szemben az automatizált módszert

lecsökkenthetjük a megoldáshoz szükséges időt és növelhetjük az eredmények pontosságát.

A dolgozatban összefoglaltam a kutatási eredményeim a képregisztráció területéről.

B.1. Az eredmények tézisszerű összefoglalása

A dolgozat eredményeit két fő téziscsoportban foglaltam össze, ahol az elsőben 3D objektu-

mok, míg a másodikban 2D alakzatok regisztrációjával foglalkozom. A téziscsoportok és az

elfogadott publikációim közötti kapcsolatot a B.1 táblázatban prezentálom.

I.) Háromdimenziós objektumok regisztrációja

A korábban publikált 2D keretrendszer által inspirálva [7], a módszer kiterjeszthető 3D

objektumok regisztrációjára. A javasolt módszerben a regisztrációs problémát egy meg-

felelően konstruált nem-lineáris egyenletrendszer megoldására vezetjük vissza, ahol az

ismeretlenek megadják a keresett transzformációs modell paramétereit.

(a) Az egyenletekben szereplő integrálok általános 3D felszínek esetén felszíni integ-

rálok lesznek. Ezek hatékony kiszámítására levezettem két rekurzív numerikus

formulát (egy egzakt és egy approximációs) háromszögfelszíni hálós reprezen-

táció esetén. A javasolt keretrendszert nagy méretű szintetikus adathalmazon

teszteltem, vékony fémlemez spline transzformációt (TPS) használva. Empiriku-

san igazoltam a módszer robusztusságát szegmentálási hibákkal szemben, és az

eredményeket összehasonlítottam két korábban publikált módszer eredményei-

vel [5, 6]. Végül a keretrendszer valós alkalmazhatóságát különböző emberekről

készített 3D arcfelvételek illesztésével mutattam be.

(b) Térfogati objektumok illesztése esetén az integrálok felírhatók volumetrikus in-

tegrálokként is. Ehhez kétféle reprezentációt vizsgáltam: a voxel alapú és a zárt

háromszögfelszíni hálókkal megadott objektumokat. A voxel alapú megoldásnál
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a [7] cikkben publikált elméleti eredmény felhasználásával levezettem egy haté-

kony numerikus számítási eljárást polinomiális transzformációk alkalmazásakor.

A zárt felszíni hálós megoldásban az általános felszínekre felírt egzakt számítási

formulát követve egy rekurzív, tetraéder alapú megoldást vezettem le TPS transz-

formációkra. A módszerek hatékonyságát nagy méretű szintetikus teszthalmazon

igazoltam. A módszer robusztusságát szegmentálási és modell túlillesztési hibák-

kal szemben kísérleti úton igazoltam. A kapott eredményeket összehasonlítottam

két korábban publikált módszer eredményeivel [5, 6]. A módszer valós alkalmaz-

hatóságának igazolására tüdő CT felvételek és agyi felszínek regisztrációja került

bemutatásra.

II.) Kétdimenziós alakzatok regisztrációja

A téziscsoport összefoglalja az eredményeim bináris és többszintű képek regisztráci-

ójában. Első témámban kitakart és hiányos bináris alakzatok regisztrációjával foglal-

koztam, ami egy gyakori probléma valós környezetben készített képek illesztésénél.

Ezt követően a bináris alakzatok nem-lineáris regisztrációja során tapasztalható alul-

határozottság problémájára javasoltam egy megoldást. Végül kidolgoztam egy ad-hoc

kamerahálózatok kalibrációjának meghatározására alkalmas algoritmust.

(a) A [122, 127] cikkekben bemutatott, bináris alakzatok affin illesztésére alkalmas

keretrendszer adaptálható kitakart alakzatok regisztrációjára, az integrálási tarto-

mány alkalmas megválasztásával. A javasolt algoritmusban az alakzatokat poligo-

nokként reprezentálva, iterációnként meghatároztam a kitakart területeket. Majd

ezen területeket integrálási tartományként használva meghatároztam a legjobb

affin transzformációt az alakzatok között. A módszer hatékonyságát nagy mé-

retű szintetikus adathalmazon igazoltam. Az eredményeket összehasonlítottam

két korábban publikált módszer eredményeivel [6, 44]. A javasolt módszer va-

lós alkalmazhatóságát városi körülmények között készített statikus és dinamikus

takarásokat tartalmazó képeken mutattam be.

(b) A [7] cikkben bemutatott módszer tovább regularizálható szürkeárnyalatos képek

alkalmazásával. Ehhez kidolgoztam egy olyan formalizmust, amelyben a geomet-

riai és intenzitás információk egy közös egyenletrendszerben jelennek meg. A

módszer hatékonyságát empirikus úton igazoltam nagy elemszámú szintetikusan

generált halmazon. Kísérleti úton megmutattam az eljárás robusztusságát külön-

böző szórással generált normális eloszlású intenzitás zaj mellett. Összehasonlítot-

tam a kapott eredményeket két korábban publikált módszer eredményeivel [11,

12]. Végül valós körülmények között készített képekkel és egy publikusan elérhető

tesztadatbázison igazoltam a módszer alkalmazhatóságát.

(c) Az alacsony rangú textúrákkal (TILT) [142] kapcsolatos eredmények felhasználha-

tók kamerahálózatok kalibrációjának meghatározására. Kidolgoztam egy algorit-

must, amely TILT jellemzőkből kinyert 2D homográfiák segítéségével meghatároz-

za egy kamerahálózat és az egyes kamerák abszolút helyzetét a világ koordináta-

rendszerben. A javasolt algoritmus hatékonyságát és stabilitását nagy elemszámú

szintetikus halmazon és mobil kamerákkal készített valós képekkel is igazoltam.
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