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Doctor of Philosophy

Affine Correspondences and their Applications for Model Estimation

by Déaniel BARATH

This work aims to solve sub-problems of two major fields in computer vision:
minimal problems in two- or multi-view geometric model estimation and robust
model fitting. Minimal solvers, i.e. algorithms solving estimation problems from
a minimal sample of data points, are involved in most of the vision pipelines as
an the engine of the applied robust method, e.g. RANSAC [1] and its recent vari-
ants. Vision pipelines, including calibration, structure-from-motion, image match-
ing and retrieval, benefits from efficient minimal solvers which improve their per-
formance upon. Given a minimal point correspondence set in two views, state-of-
the-art solvers, with a few exceptions, use them solely through their coordinates.
Nevertheless, as it will be demonstrated in this thesis, exploiting affine correspon-
dences which encode higher-order geometric information leads to methods superior
to the state-of-the-art in terms of stability and the number of data points required.
Methods will be proposed for surface normal, homography, epipolar geometry, and
focal length estimation.

The second major part of this work focuses on robust model fitting which is
also a significant part of vision tasks. The base problem is to fit a single or more
model instances, e.g. planes to a 3D point cloud or fundamental matrix to point
correspondences, interpreting the input whilst it is contaminated by noise and con-
tains outliers. We consider outliers as points not belonging to any desired model
instance. First, a method is proposed to distinguish inliers and outliers in a set of
correspondences without necessarily assuming an underlying model. Then a new
local optimization step is proposed for locally optimized RANSAC (LO-RANSAC)
outperforming its state-of-the-art variants. Finally, we focus on multi-homography,
then general multi-class multi-instance, fitting — the problem of interpreting the in-
put data as a mixture of noisy observations originating from multiple instances of
multiple classes. The methods proposed in this work were validated both on syn-
thesized and publicly available real world datasets.
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Chapter 1

Introduction

During the last few decades good-quality cameras and sensors had become pub-
licly available. This progress established the need for a research field describing the
mathematical relationships of the real world and its projections into images. This
field became the so-called computer vision.

Understanding the surrounding environment or the camera motion are funda-
mental problems in computer vision. This information is usually characterized by
mathematical models, for instance the relative motion of the cameras by a 3 x 3 es-
sential matrix; or the mapping between the projections of a 3D plane in two images
by a 3 x 3 homography matrix. The general approach for estimating these kinds of
models consists of two major steps: (i) establishing point correspondences between
image pairs, (ii) then applying a robust estimator. In this thesis, we investigate the
robust estimation of these geometric models exploiting a non-traditional input data:
affine correspondences. Even though the relationships of geometric vision are con-
sidered as already solved problems advanced in the early 80’s, we show that several
problems remained unsolved. The thesis aims to solve a few of them.

An affine correspondence is basically a point correspondence in two views to-
gether with a 2 x 2 local affine transformation. This affine mapping approximately
transforms the regions around the observed points in the images. Nowadays, sev-
eral affine covariant feature detectors are available, such as Affine SIFT [2] or Hessian-
Affine [3]. However, the commonly used detectors like SIFT [4] also provide a part of
the related affine transformation, e.g. rotation or scales. With a few exceptions, this
additional information is ignored in most of the geometric estimation tasks and solely
the point coordinates are exploited.

Of course, several estimation problems had been successfully approached by us-
ing affine correspondences. For instance, a homography matrix can be estimated
using two correspondences [5]. There is a one-to-one relationship between a surface
normal and a local affinity if calibrated cameras are given [5], and the fundamen-
tal matrix can be approximated [6], [7] or estimated indirectly using three [8] or
two [9] of them. However, several problems remained unsolved including the direct
relationship of local affinities and epipolar geometry or multi-view surface normal
estimation. In this thesis, we show that many of the computer vision problems are
solvable using local affinities. The proposed estimators always require smaller sam-
ples, i.e. less data points, than the state-of-the-art for obtaining a model. Moreover,
in many cases, the proposed methods are superior to the state-of-the-art in terms of
geometric accuracy as well. We also show problems where the direct relationship
with affinities had not been explored before.

Having geometrically accurate estimators is a justifiable goal, but to see the im-
pact of requiring small samples, we need to understand the field where minimal
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solvers are most frequently used. State-of-the-art hypothesize-and-verify robust esti-
mators like locally optimized RANSAC [10] (LO-RANSAC) or USAC [11] are ran-
domized algorithms combined with a minimal solver as an engine. To achieve prob-
abilistic guaranties of finding the best desired model instance with a predefined con-
tidence, the size of a sample highly affects the number of samples, i.e. iteration, that
have to be drawn. Thus the processing time is a function of the sample size. Benefit-
ing from affine correspondences which encode higher-order geometric information,
the size of the required samples is significantly decreased and, thus, the estimation
process is speeded up.

In the second part of the thesis, we switch from geometric estimation and focus
on robust model estimation. We partition these kind of problems into three groups as
follows: (i) single-class single-instance, (ii) single-class multi-instance and (iii) multi-
class multi-instance fitting. Solving the single-class single-instance case, hypothesize-
and-verify approaches like RANSAC [1] and its recent variants, had become a part
of the most successful algorithms in computer vision. They have thousands of cita-
tions and dozens of modifications published year-by-year. In general, these methods
aim to find a single model instance, e.g. an essential matrix interpreting the relative
motion of a camera, by drawing and validating random samples.

Generalizing the problem, multi-model fitting has been studied since the early
sixties, the Hough-transform [12] being the first popular method for extracting mul-
tiple instances of a single class. Most recent approaches [13], [14] focus on the single
class case: finding multiple instances of the same model class. A popular group
of methods [13], [15] adopts a two step process: initialization by RANSAC-like in-
stance generation followed by a point-to-instance assignment optimization by energy
minimization using graph labeling techniques [16]. Another group of methods uses
preference analysis, introduced by RHA [17], which is based on the distribution of
residuals of individual data points with respect to the instances. In this thesis, we
approached a special case: multi-homography fitting which is the problem of find-
ing a set of homographies in two images.

The multiple instance multiple class case considers fitting of instances that are not
necessarily of the same class. This generalization has received much less attention
than the single-class case. To the best of our knowledge, the last significant con-
tribution is that of Stricker and Leonardis [18] who search for multiple parametric
models simultaneously by minimizing description length using Tabu-search. In the
last part of the thesis, we propose a general formulation for the multi-class case and
show that it leads to results superior to the state-of-the-art single-class approaches
for various problems.

1.1 Main Contributions

The contributions of this thesis can be separated into two distinct groups: (a) minimal
solvers exploiting affine correspondences for various problems and (b) robust methods
for estimating geometric models.

1.1.1 Published Papers

Impacted journal articles.
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1.1.2 Contribution

Minimal solvers. An optimal method, in the least squares sense, is proposed to es-
timate surface normals in both stereo [34], [42] and multi-view cases'. The proposed
algorithm exploits exclusively photometric information via affine correspondences
and estimates the normal for each correspondence independently. The normal is ob-
tained as a root of a quartic polynomial, therefore the processing time is negligible.
The method has been validated on both synthetic and publicly available real world
datasets. It is superior to the state-of-the-art in terms of accuracy and processing
time.

We propose a method, called HAF, to estimate planar homography from an affine
correspondence satisfying the epipolar constraint in an image pair [21], [32]. As a
minimal solver, it estimates the homography from a single correspondence, however, it
is generalized for the over-determined case as well. As a side-effect of the tests, the
state-of-the-art affine-covariant detectors are compared to each other w.r.t. the accu-
racy of the estimated point-wise homographies. We then generalized HAF, making
it applicable if only partial affine correspondences are given. [26]

We then show the direct relationship of epipolar geometry and affine correspon-
dences. Two novel, linear constraints are derived between the essential or funda-
mental matrices and a local affine transformation. Even though perspective cameras
are assumed, the constraints can straightforwardly be generalized to arbitrary cam-
era models since they describe the direct relationship between local affinities and
epipolar lines (or curves).

Exploiting this relationship, for a pair of images satisfying the epipolar con-
straint, a method for accurate estimation of affine correspondences is proposed. The
method returns the local affine transformation consistent with the epipolar geometry
that is closest in the least squares sense to the initial estimate provided by an affine-
covariant detector. The minimized L, norm of the affine matrix elements is found
in closed-form [28]. The method, with negligible computational requirements, is

'A paper, entitled Optimal Multi-View Surface Normal Estimation using Affine Correspondences, was
submitted to Transactions on Image Processing
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validated on publicly available benchmarking datasets and on synthetic data. The
accuracy of the local affine transformations is improved for all detectors and all im-
age pairs. Implicitly, precision of the tested feature detectors was compared.

It is shown that the essential matrix is estimable from two affine correspondences
for a pair of calibrated perspective cameras. The proposed method is also applicable
to the over-determined case. We extend the normalization technique of Hartley to
local affinities and show how the intrinsic camera matrices modifies them. Benefit-
ing from the low number of exploited points, it can be used in robust estimators, e.g.
RANSAC, as an engine, thus leading to significantly less iterations.

A minimal solution using two affine correspondences is presented [25] to es-
timate the common focal length and the fundamental matrix between two semi-
calibrated cameras — known intrinsic parameters except a common focal length. The
obtained multivariate polynomial system is efficiently solved by the hidden-variable
technique. Observing the geometry of local affinities, we introduce novel conditions
eliminating invalid roots. To select the best one out of the remaining candidates, a
root selection technique is proposed outperforming the recent ones especially in case
of high-level noise.

Robust methods. An approach is proposed [19], [29] for outlier rejection from a
set of 2D point correspondences which does not require any underlying models, e.g.
fundamental matrix. The solution is obtained minimizing an energy originated from
the neighborhood-graphs in both images using a grab-cut-like algorithm: iterated
graph-cut and re-fitting. The method is validated on publicly available datasets, it is
real time for most of the problems and achieves more accurate results than RANSAC
and its state-of-the-art variants in term of outlier rejection ratio. It is applicable to
scenes where a single fundamental matrix is not estimable, e.g. non-rigid or degen-
erate ones.

A novel method, called Graph Cut RANSAC [23], GC-RANSAC in short, is pre-
sented. To separate inliers and outliers, it runs the graph cut algorithm in the local
optimization (LO) step which is applied after a so-far-the-best model is found. The
proposed LO step is conceptually simple, easy to implement, globally optimal and
efficient. Experiments show that GC-RANSAC outperforms LO-RANSAC and its
state-of-the-art variants in terms of both accuracy and the required number of itera-
tions for line, homography and fundamental matrix estimation on public datasets.

Considering the problem of fitting multiple homographies in two views, we pro-
posed an efficient method [27] for the recovery of the tangent planes of a set of point
correspondences satisfying the epipolar constraint. The problem is formulated as
a search for a labeling minimizing an energy that includes a data and spatial reg-
ularization terms. Experiments on the fountain-P11 3D dataset show that Multi-H
provides highly accurate tangent plane estimates. It also outperforms all state-of-
the-art techniques for multi-homography estimation on the publicly available Ade-
laideRMF dataset. Since the method achieves nearly error-free performance, we in-
troduce a more challenging dataset for multi-plane fitting evaluation.

In the end of the thesis, we propose a general formulation, called Multi-X [22], for
multi-class multi-instance model fitting — the problem of interpreting the input data
as a mixture of noisy observations originating from multiple instances of multiple
classes. Solving the problem, we augment the commonly used a-expansion-based
technique with a new move in the label space. The move replaces a set of labels with
the corresponding mode in the model parameter domain, thus achieving faster and
more robust minimization. Key optimization parameters like the band-width of the
mode-seeking are set automatically within the algorithm. Considering that a group
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of outliers may form spatially coherent structures in the data, we propose a cross-
validation-based technique removing statistically insignificant instances. Multi-X
outperforms significantly the state-of-the-art on publicly available datasets for di-
verse problems: multiple plane and rigid motion detection; motion segmentation;
simultaneous plane and cylinder fitting; circle and line fitting.



Chapter 2

Theoretical Background

In this section, we discuss the topics closely related to this thesis but do not belong
to the fundamental knowledge of computer vision. We consider projective and epipo-
lar geometry, homography, least-squares estimation, robust estimation, etc. as parts
of this knowledge. Thus they are not not discussed deeply in the thesis. For the
broad understanding of the topic, we suggest to read the book of Hartley and Zis-
serman [43] first.

2.1 Affine Correspondences

In this paper, we consider an affine correspondence (AC) as a triplet: (p1,p2,A),
where p; and p; are a corresponding point pair in the two images, and

A [al 02}
a3 a4

is a 2 x 2 linear transformation which we call in the latter sections local affine trans-
formation (see Fig. 2.1). To define a local affine transformation, we use the definition
provided in [44] as it is given as the first-order Taylor-approximation, w.r.t. the im-
age directions, of the 3D — 2D projection functions. This is shown in depth in Ap-
pendix B. For perspective cameras, A is the first-order approximation of the related
homography matrix.

Although, in the literature, one can find affine correspondences referred as affine
frames, we differentiate them. An affine frame is a triplet of point correspondences
(p1,pd), (P2, P3), (P}, p3) providing only an approximation of the related affine cor-
respondence. Without proving the difference, it can easily be seen that A, as the
first-order approximation of the projection functions, is valid only infinitesimally
close to the observed correspondences. This “infinitesimally closeness” can only be
approximated by a triplet of correspondences, to the best of our knowledge.

In the rest of the thesis, affine correspondences are considered as input provided
by an affine-covariant feature detector. These detectors, including Affine SIFT [2]
(ASIFT), Hessian-Affine [3], MSER [45], obtain point coordinates and local affine
transformations simultaneously. We will distinguish two types of them: (i) ones pro-
viding ACs calculated from three correspondences (from affine frames) like MSER [45].
(ii) Other types of detectors, like ASIFT [2] and MODS [46], obtain matrix A di-
rectly by sampling the affine space; or by applying an optimization of a photometric
cost function, e.g. Hessian-Affine, Harris-Affine. To obtain accurate ACs, we chose
Hessian-Affine combined with the view-synthesizer of ASIFT.
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FIGURE 2.1: Cameras C; and C; observing a point P lying on a continuous surface, e.g.
plane. The neighboring pixels of the projected points between the 1st and 2nd views are
related by a local affine transformation A.

2.2 Data Normalization

In this section, we show the data normalization technique which we use for funda-
mental matrix and homography estimation. We just write here the final formulas
since all the proofs are available in [43].

Given a set {(p1, p3)}}j—; of n € N point correspondences in their homogeneous
form. Normalizing transformation T; in the ith image (i € {1, 2}) is as follows:

V2/d; 0 0] 1 0 —m
T, = 0 ﬂ/dz 0 [0 1 —g; (2.1)
0 0 1]]0 0 1

where p; = [Z;, 7, 1]T is the mean of the point set in the ith image and

d; = % Z\/(pi —p)'(Pi - P) (2.2)
j=1

is the average distance of the points from p;. The normalized correspondence set is
n

as follows: {(p1,P3)}j—; = {(T1p7, Tap3)}—;.

For fundamental matrix estimation, using the normalized correspondences leads
to significantly more accurate results [47]. After the estimation, F is calculated from
the normalized fundamental matrix F as follows: F = T, TFTl_l.

Homography estimation from the normalized correspondences also leads to re-

sults superior. Homography H is recovered from the normalized one as follows:
e

H =T, HT,.

2.3 Iteration number of Random Sample Consensus

In this section, we discuss the required iteration number of RANSAC. Suppose that
n € N data points are given and | € N (I < n) of them are inliers. The inlier ratio, i.e.
the probability of selecting an inlier if uniform distribution is considered, is p = £

(€ [0,1]). Selecting a sample which consists of m € N inliers leads to probability
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TABLE 2.1: Theoretical iteration numbers for RANSAC. ¢ € [0, 1] is the desired proba-
bility, p € [0, 1] the inlier ratio, n € N the point number used for the estimation.

L q— | 0.95 0.99 |
m/p|[ 0751050 0.25 [0.75] 050 | 0.25
1 2 4 10 3 7 16
2 41 10 46 6 16 71
3 5] 22 190 8 34 292
4 8| 46 765 | 12 71 1177
5 11| 94| 3066| 17| 145| 4713
6 15 190 | 12269 | 23| 292 | 18860
7 21| 382 49081 | 32| 587 | 75449
8 28 | 765196327 | 44 [ 1177 | 301 802

p™. The number of iterations required k& € N which decreases (1 — p™)* below a
user-defined confidence value g € [0, 1] is as follows:

log(1 —q)

> 71(%(1 oy (2.3)

Example values are reported in Table 2.1 for confidence values 0.95 and 0.99 (1st
row). The iteration numbers of different minimal sample sizes (1st column) are
shown for varying inlier percentage (2nd row).

2.4 Minimal Solvers

In this thesis, we describe minimal solvers as methods which estimate geometric mod-
els from minimal samples exploiting a predefined constraint set. A minimal sample is
a set consisting of as few data points as required for the estimation.

As an example, for estimating fundamental matrix F in two images, more than
one minimal solvers exist. The eight-point algorithm [47] considers no constraints
but the scale-ambiguity of F and the well-known relationship of point correspon-
dences and fundamental matrices: pJFp; = 0, where p; and p are the points in the
images. To reduce the size of the required sample, the seven-point algorithm [43]
enforce the so-called determinant constraint stating that det(F) = 0. Even though
the seven-point method is “more minimal” we consider both methods as minimal
solvers since w.r.t. a predefined constraint set, they provide an estimation from a
minimal sample.

Justifying the need for minimal solvers, state-of-the-art hypothesize-and-verify ro-
bust estimators, e.g. RANSAC [1] are randomized algorithms selecting a minimal
sample as a first step, generating a hypothesis using a minimal solver, then verify-
ing it w.r.t. data points. Combining these methods with a solver which exploits less
data leads to more stable results and earlier termination due to the combinatorics
of the problem (see Table 2.1). From theoretical point of view, each minimal solver
interprets the solved problem more efficiently and effectively than the ones before
and thus, leads to deeper understanding.
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Chapter 3

Estimating Planes and their
Projections

In this chapter, we discuss the exploitation of affine correspondences for estimating
(i) surface normals and (ii) homographies. Each of the proposed methods uses fully
or partially known affine correspondences and aims to solve a minimal problem.

3.1 Optimal Multi-View Surface Normal Estimation

Even though computer vision has been an intensively researched area in computer
sciences for decades, several unsolved problems exist in the field. The one, we aim
at in this section, is the analytic estimation of surface normals in a multi-view sys-
tem exploiting exclusively photometric information, i.e. affine correspondences. The
spatial relationship of the points is not considered thus achieving point-wise estima-
tion without requiring dense clouds.

Several tasks, including surface reconstruction and segmentation, or object de-
tection, require accurate surface normals. Benefiting from the higher-order infor-
mation which they encode, the accuracy of surface reconstruction improves upon.
For instance, the widely-used Poisson-reconstruction technique [48], [49] is based
on both the point coordinates and surface normal. Having an oriented point cloud
makes geometric primitive fitting, e.g. that of planes or cylinders, significantly eas-
ier due to the fact that less points are enough for the model-hypothesis generation.
This number highly influences state-of-the-art multi-model fitting algorithms like
PEARL [13] in terms of accuracy and processing time. As an example, plane fitting
needs at least one oriented or three non-oriented points.

One of the first algorithms solving the surface normal estimation problem was
the photometric stereo (PS) method [50]. Requiring totally controlled light condi-
tions, the applicability of PS is limited into the laboratory. The original PS assumes
Lambertian surface, thus not dealing with shiny materials, and estimates the nor-
mal using the so-called “Bidirectional Reflectance Distribution Function” [51] with
known light-source parameters. However, several modifications, e.g. [52], [53], have
been proposed since then, making it more accurate and applicable to various mate-
rials.

Between two calibrated views, the normal estimation problem is usually ap-
proached by decomposing the homographies of corresponding image patches [54],
[55]. For calibrated views, a homography can be interpreted as the tangent plane
of the surface at the observed 3D location, and the normal can accurately be com-
puted. However, the decomposition itself is ambiguous as it was shown by several
studies, e.g. in [56], and homography estimation cannot be done for each point corre-
spondence independently. Thus, in general, these methods are applied to superpixel
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FIGURE 3.1: Three cameras observing a point P on a plane with normal N. The neigh-
boring pixels of the projected points between the ith and jth views are related by a local
affine transformation A;;.

correspondences, i.e. corresponding image regions, supposing that the underlying
surface patch is planar.

In 2009, Kevin Koéser [5] proposed a technique exploiting local affine transforma-
tions. In brief, a local affinity can be interpreted as the partial derivative, w.r.t. the
image directions, of the underlying homography at the observed location. There-
fore, it encodes higher-order geometric information, i.e. the surface normal. To the
best of our knowledge, the method in [5] was the first which made the analytical
point-wise normal estimation achievable between two views since local affinities can
be measured by affine-covariant feature detectors, e.g. Hessian-Affine [57], Affine-
SIFT [2] or MODS [46], for each point correspondence independently. Benefiting
from this approach, the ambiguity, to which the homography decomposition leads,
disappeared.

Considering multiple views, an objective of several structure-from-motion (SfM)
pipelines is to estimate the surface normals accurately since they contain fundamen-
tal information for the further surface reconstruction. The well-known algorithm,
called Patch-based Multi-View Stereo (PMVS) proposed by Furukawa et al. [58],
[59], solves the problem as an optimization numerically refining the plane param-
eters to minimize a joint photometric cost function. The cost is based on zero-mean
cross-correlation applied to patches, each transformed by the homography which
the plane induces. [60] approaches the problem similarly to PMVS, assuming that
the surfaces can be represented by local planar patches. It proposes a unified cost
function considering both geometric and photometric terms. These methods obtain
accurate surface normals, nevertheless, they are sensitive to the size of the patch for
which the photometric cost is computed, i.e. the window size. Being solved numer-
ically, they are relatively slow and do not guarantee global optimum.

The contributions of the section are: (i) we propose an analytic multi-view nor-
mal estimation technique which is optimal in the least squares sense and exploits lo-
cal affine transformations (see Fig. 3.1). First, we show the relationship of local affini-
ties and surface normals considering two views, then this approach is extended. To
the best of our knowledge, this is the first analytic solution applicable to the multiple
view case. The equations are not linearized, therefore, the globally optimal solution
is carried out efficiently as a root of a fourth-order polynomial thus achieving fast
calculation. (ii) Reflecting the fact that the estimation of local affinities is sensitive to
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the view angle, thus a measured set of affinities might contain outliers, we propose a
robust estimation technique. It is reported both on synthesized and real world tests,
that the proposed method outperforms the state-of-the-art in terms of accuracy and
processing time. (iii) Besides, we demonstrate the applicability of the method on two
problems: replacing the seed-point generation step of PMVS with the proposed ap-
proach leads to more accurate reconstruction; and multi-plane fitting becomes more
robust applied to the resulting oriented point cloud.

3.1.1 Relationship of Affine Correspondences and Surface Normals

In this section, we discuss the relationship of local affine transformations and surface
normals considering perspective camera model.

Assume that a surface point [v y z]T is observed by two cameras. The cam-
era model can be arbitrary. The projected image points p1 = [u1 v1]' and py =
[us o] are calculated using the 3D — 2D projection function IT; as [u; vt =
IT; (x,y, z), where i € {1,2} denotes the image number. Affine transformation A,
mapping the infinitesimally close neighborhood of p; to that of py, is defined by the
Jacobian of the surface projections through P; and P as follows:

A=J,J7" = [‘“ “2] : (3.1)

as a4

if the surface is written in parametric form. For details, see Appendix B that shows
in depth how affine transformation A can be determined if projective functions II;
are given.

For perspective cameras, the projection is written as

[ui V; 1]T:l'Pi [a: Yy z 1}

Si

T
)

where

Pii1l Pi12 Pi13 Pil4d
P;= |pi21 pi22 Pi2s piza| 1€{1,2}
Pi31 Pi32 DPi33 DPi34

is the projection matrix, s; = p; 312 + p; 32y + pi 332 + pi 34 is the projective depth,
u; and v; are the projected coordinates in the ith image, and [z y =z 1]T is the
homogeneous 3D point. The gradients of the projection formulas w.r.t. to the spatial
directions are as follows:

duy 1 1
Pr = 5 (Pian + uipiz), 5 (Pi12 + wipi32),
Ou; 1 _ 1
5 = ;i(pi,13 +uipi33), FHo = %(Pi,zl +vipi31),
1
si si

%Z = 5 (pig2 tvipig2), G = 5 (P23 + vipis3).

Therefore, the gradient vectors are written as

Di11 + UiPs 31 1 |Pi2t + viDi,31

1
=5 |Pia2 T uipig2 |, VIL, = o |Pi22 + vipi 32
Pi13 + UiP; 33 | pi23 + vipis3

VIL
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By building the Jacobians using gradient vectors VII; , and VII; , and multiplying
them, local affine transformation A becomes

al CL2:| 1 [nTwl nTW2:|
)

as a4 anTws |[nT

(3.2)

A=JJ;'= [

n ws IITW4
where o = s1/s5 is the ratio of the projective depths in the two images and

w1 = s152VIL, X VIIgy, wa = s152VIIpy X VI,
W3 = 8182VH17U X VHgﬂ), Wy = 8182VH27U X VHLU, (33)
Wy = 3131VHM X VHl,u-

Eq. 3.2 determines the relationship of surface normals and local affine transforma-
tions for the perspective camera model. We will use this relationship to define the
optimal solvers for both the two- and multi-view cases.

Note that if the projective depth s; is unknown, but the upper left 3 x 3 subma-
trices of the projection matrices P; and P» are known, the gradient vectors can be
calculated up to an unknown scale — this scale is the multiplicative inverse of the
projective depth s;. Also note that vectors wy, ..., wy are scaled by s;s2 whilst wj
by s1s1. Therefore, the surface normal is independent of the translation between the
two cameras since the last columns of the projection matrices are the product of the
intrinsic parameters and the translation.

3.1.2 Multi-View Optimal Surface Normals

Optimal solvers are proposed for the stereo and multi-view cases in this subsection.
Then we propose a robust algorithm minimizing the effect of the outliers.

Stereo Case. In this subsection, we show that a surface normaln = [n, n, n,|T
can optimally be estimated, in the least squares sense, exploiting a local affinity. Sup-
pose that an affine correspondence (p1, p2, A) obtained by e.g. an affine-covariant
feature detector is given in two images. The optimization problem is written by
reformulating Eq. 3.2 as follows:

4 T 2
) n wy
g - 3.4
arg min <nT . ak) , (3.4)

where the only unknowns are the coordinates of n. Note that the four equations
can be linearized multiplying each by nTwj;, however, the linearization distorts the
original signal-noise ratio leading to noise-sensitive estimates.

Such kind of optimization problems are usually solved by Lagrange multipliers,
however, in the current case the derivatives would be difficult to solve. Therefore,
we exploit that the length of the surface normal can be arbitrary and consider con-
straint

Ng +ny+n, =1

whichleadston = [n, n, 1-—n,—n,]!. Applying this constraint, Eg. 3.4 becomes

2
arg mlnz <m B+ Whz _ ak> ; (3.5)

mTqs + ws .
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where m = [n, ny]T, Qi = [Wig — Wi, Wiy — w@z]T and w; 5, w; 4, w; . are the x,
y, z coordinates of w;, respectively. Note that setting a coordinate to be equal to a
predefined value, e.g. n, = 1, is not preferred since the case when n, ~ 0 would be
degenerate and should be handled.

The optimal solution, in the least squares sense, is where the derivative w.r.t. m
equals to zero:

1
> Brry =0,
k=1

where

T
m-qi + Wk~
By = ————— —ay,

mTqE) + ws »

(mTqs +ws . )aqr — (mTqg + wi 2)qs
(mTq5 + w5,z)2 '

Tk

Note that r;, is a two-dimensional vector consisting of the expressions regarding to
both coordinates of vector m. After elementary modifications, including the multi-
plication by the denominator, the following formula is obtained:

4
Z Si |: Q5Qk x qi‘]5,x) + Ws 2 Qkx — wk,z‘]&i,x] -0
—1 qBQk,y qiq5,y) + W5 2qk,y — Wk 2G5y ’

where s = m'(q; — qrqs) + Wk, — axrgs,.. Replacing m with its coordinates, the
equation becomes

4
Qln, + Ulp, + T
(Qung + Ypny +T'y) ke k™ kl =0,
; Qing —l-\I’k,ny-i-Fk
where
Q = Qke — 45,20k, U, = Ay — 95,y0k,
I'v = wg,—apws;, Q1 = 0,
\Ijk,l = Qy9kx — 9k y495,z, Fk,l = W54k 2 — Wk 2952,
Q2 = Galky — a5y, Ye2 = 0,
Tro = ws.qry — Wk 2G5y-

The rows of the vector equation yield two quadratic curves written in implicit form
as

4
Z A n2 + Bk,mf, + Crangny + Dy ing + Ei1iny + Fr1 = 0,
k=1

4

Z Apon2 + Bk,an + Crongny + Dy ong + Eiony + Fi 2 = 0,
k=1

where

Ay = Qe Br, = AR
Cri = QWi+ Qg Drg = QD+ iy,
Ery = VU lp+ 5 Qp, Fiy = IS
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for I € {1,2}. Since Q1 = Uy, 2 = 0 coefficients A ; = By 2 = 0.
The summation can be eliminated from the equation by adding up the coeffi-
cients separately, e.g. B; = SF w—1 Br.1- Thus the resulting curves are as follows:

Elnz + C’lnxny + Ding + Elny +F = 0, (3.6)
flgni + C’gnzny + Dgnx + Egny + FQ = 0. (3.7)

This polynomial system is straightforward to solve, thus applying a sophisticated
polynomial solver, e.g. Groebner-basis [61], would be an overshot. Instead, we ex-
press parameter n, from Eq. 3.7 as

— AQTL +D2nx+F2 (38)
Y Cong + Fo

Substituting Eq. 3.8 into Eq. 3.6 and multiplying by the denominator lead to

Bl (Agni + ﬁgﬂx + F2)2 — él (Agni + ﬁgnx + Fg)(éznx + Eg) +
ﬁlx(égnx + E2)2 — El (Agni + ﬁgﬂi + FQ)(Oan + EQ) +
Fl(égna; + E2)2 =0.

2

The coefficients regarding each monomial (n2, n3, n2, nl, and n2) are as follows:

Wt BUAL— CrinGn,
ni i 2B1A9Dy — C1AsEy — C1D3Co + D1022 — ElAQCQ,
n?v : BI[)Q + 2B1A2F2 — C1DyEy — C1FyCy+

2D102E2 — E1A2E2 — ElDQCQ + FlCl,
nglc : QBlDQFQ — ClF2E2 -+ D1E2 E1D2E2—
ElFQCQ + 2F102E2,
n? : Blﬁg — E1F2E2 + F1E22

This fourth-order polynomial equation can be solved by any polynomial solver tool-
box, e.g. Matlab roots or OpenCV solvePoly methods. Coordinate n, is then obtained
using Eq. 3.8 and finally, n, = 1 — n, —n,. To select the best out of the candidate real
roots, we choose the one minimizing Eq. 3.4.

Summarizing this subsection, the coordinates of the surface normal can opti-
mally be estimated in closed-form as the roots of a fourth-order polynomial without
linearizing the original equations.

Multi-View Case. Given a sequence of points in N > 2 images with local affinities
between every pair — this is a realistic assumption since affine-covariant feature de-
tectors estimate Jacobian J for each image independently, thus affinity A;; mapping
from the ith to jth images is calculated as J;J; . Extending Eq. 3.4 to more image
pairs, the optimization problem becomes

2
arg mm Z Z Z <2T;VV”I; — aij7k> , (3.9)

=1 j=i1+1k=1

where each vector w;; is calculated similarly to Eq. 3.3 using the coordinates in the
ith and jth images. It can be seen that the inner summation leads to two quadratic
curves (Egs. 3.6, 3.7), and the outer two is basically the summation of these curves
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over the possible view pairs:

N—-1 N
Z B,»j,ln?/ + C’mlnzny + ﬁij,lnz + Eij,lny + FijJ =0, (310)
i=1 j=it+1
N-1 N

Z Al‘jgni + Cijgnxny + Dz‘j,an + Ez'jgny + Fij,g =0. (3.11)
i=1 j=it+1

These two equations can be formulated as

Biy® + Cingny + Ding + Einy + By =0, (3.12)
§2?J2 + aQ”xny + 1327%: + EQny + ﬁz =0, (3.13)

where

N-1 N
§k:Z Z S’Zj,k? k€{172}, SE{B)07D7E7F}
i=1 j=i+1

Thus the solution is given as the intersection of the summed curves (Egs. 3.12, 3.13)
in a fairly similar manner to that of the two-view case. Note that the normalization
of the coefficients is necessary to avoid numerical instability. Another note that the
missing data problem, i.e. when information is not given for every image pair, can
be resolved by introducing weight g;; into Eq. 3.9. Weight ¢;; is zero if there is no
correspondence between the ith and jth views and one otherwise.

Robust Estimation. Reflecting the fact that the local affinities might be contami-
nated by noise and contain outliers, we propose a robust estimation process here as
an iteratively re-weighted least squares algorithm [62]. First, all weights are set to
1.0 and the indicated normal is computed applying the multi-view algorithm. Then,
in each step of the alternation, the weights for the view pairs are re-calculated on the
basis of the error of the estimated normal.

Each weight ¢;; regarding the ith and jth views affects the indicated quadratic
curves (the inner part of Egs. 3.10, 3.11) by multiplying them as follows:

N-1 N

Z Gij (Bijany + Cijineny + Dijing + Eijing + Fij1) =0, (3.14)
=1 j=i+1
N—-1 N

Z Qij (Aijgni + C’ijgnxny + Dmgnx + Emgny + FZ‘J’,Q) =0. (315)

Il
—

+

i=1 j=i+1

3.1.3 Experimental Results

In this subsection, the performance of the proposed method is evaluated both on
synthesized and real world tests.

Synthesized Tests. In order to test the proposed method in a fully controlled envi-
ronment, /N cameras were generated by their projection matrices looking towards
the origin, each located in a random surface point of a 5-radius sphere. Then a
random 3D oriented point, at most one unit far from the origin and with random
normal, was projected onto the cameras. See the right plot of Fig. 3.2. The local
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affine transformation was calculated from the ground truth surface normal using
Eq. 3.2. Finally, zero-mean Gaussian noise with o standard deviation is added to
both the point locations and affine parameters. The reported results are computed
as the mean of 500 runs for each test case.

FIGURE 3.2: (Left) The proposed geometric constraint demonstrated by two views. A

hemisphere is selected by each camera (denoted by different dashed lines) around the

observed point. The surface normal must be in the intersubsection of these hemispheres.

(Right) The set up for the synthesized tests. The cameras are put in a random point of a
sphere.

The competitor algorithms are the two-view optimal method proposed in this
section, the techniques of Baréth et al. [34] and Kevin Koser [5]. Since they are 2-view
methods, the multi-view results are computed as the mean of the normals calculated
for every possible view pair.

Figs. 3.3(a), 3.3(b), 3.3(c), and 3.3(d) plot the angular error (in degrees) as a
function of the noise o for 3, 5, 10 and 25 views, respectively. It can be seen that the
proposed method outperforms the competitor algorithms.

Fig. 3.3(e) shows the angular error as a function of the view number with fixed
o = 0.5 pixel noise. It can be seen that the proposed method is consistent - the more
samples are given, the lower error is achieved -, and converges to the ground truth
normal faster than the other methods.

Figs. 3.3(g), 3.3(h) and 3.3(i) compare the robust version of the proposed algo-
rithm to the original one with o set to 0.1, 0.5 and 1.0 pixels, respectively. For these
tests I € [2, 15] views were generated, and 15 — I outliers (random point correspon-
dences and affinities) were added. For instance, if I = 10, i.e. 10 inlier and 5 outlier
views are given, the outlier percentage is calculated as

(5)
1 — 253- ~ 0.57. (3.16)
(5)
In the figures, the horizontal axis reports the outlier ratio and the vertical one shows
the mean angular error of the results. It can be seen that the robust version of the
proposed algorithm is able to fully overcome at most 50 — 60% outlier ratio, and
significantly reduces the error even for higher noise level.

The mean processing times of the methods are reported in Fig. 3.3(f) plotted as
the function of the view number. Due to the pair-wise parameter calculation, the
time demands of all methods show a quadratic trend, however, the proposed one
is significantly faster for more views than the competitors, e.g. processing 25 views
lasts ~ 0.03 seconds in Matlab.
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FIGURE 3.3: Synthesized tests comparing normal estimators. (a-d) report the angular
error plotted as the function of noise o with different number of views; (e) and (f) are the
error and the processing time w.r.t. increasing view number; (g-i) show the accuracy of
the non-robust and robust algorithms w.r.t. increasing noise o on different outlier levels.

Real World Tests. To test the proposed method on real world data we used the
publicly available benchmarking datasets of Stretcha et al. [63], Pusztai et al. [64]
and ETH3D [65]. The dataset! of [63] consists of several images of size 3072 x 2048
of buildings. Both the intrinsic and extrinsic parameters are given for all images,
the dense point cloud for each scene is obtained using a LIDAR sensor. The images
of [64] are captured by a turn-table equipment, the cameras are calibrated and the
ground truth point clouds are estimated using a structured light scanner. ETH3D?
contains image sequences captured by both HD and mobile cameras and 3D point
clouds obtained by laser scanner. For all datasets, the ground truth surface normals
are estimated using the dense point clouds by fitting a paraboloid to the neighbor-
hood of each point.

The competitor algorithms are FNE [34], the method of Kevin Koser [5], the two-
view optimal method (2-Opt), the proposed multi-view algorithm (MV-Opt) and its
robust variant (Robust MV-Opt). Table 3.1 reports the results of the methods on
each test scene (rows). Every block, consisting of three columns, shows the average

! Available at http://cvlabwww.epfl.ch/data/multiview/denseMvS.html
2Available at https: //www.eth3d.net /datasets#high-res-multi-view
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TABLE 3.1: Surface normal estimation. For each method, the mean (AVG) angular error
in degrees, the standard deviation, (¢) and the processing time (T) given in milliseconds
are reported. Tests (rows): (1) fountain-P11, (2) Herz-Jesus-P8, (3) Herz-Jesus-P25 are
from [63], (4) books1, (5) books2, (6) bag are from [64] and, finally, (7) courtyard (8)
delivery area (9) pipes (10) playground, (11) relief and (12) terrace are from ETH3D [65].

FNE Koser 2-Opt MV-Opt Robust MV-Opt

AVG o T |AVG o T |AVG o T |AVG o T |AVG o T
@) 132 153 0.08 | 133 202 021 | 133 152 0.04 | 131 151 0.01 5.7 54 0.44
(2) | 421 246 040 | 244 189 110| 244 188 0.02| 242 188 0.01 | 34 0.6 0.05
3) | 224 189 030|223 186 0.80| 223 186 0.10| 223 185 0.03| 9.6 122 0.10
4) 10.6 13.6 0.10 | 106 132 030 | 106 132 0.06 | 104 132 0.02 5.9 7.8 0.05
(%) | 154 209 0.10| 156 208 0.20| 155 208 0.05| 152 208 0.01 | 11.4 19.7 0.04
6) | 251 161 005|246 160 0.0 | 246 159 003 | 243 157 0.01 | 189 121 0.07
7) 243 198 006 | 244 198 0.15| 244 198 0.03| 242 194 0.01 | 123 11.0 0.22
(8 | 3.1 250 0.04| 356 252 0.10]| 356 252 0.02| 358 252 0.01 | 183 19.0 0.72
9 | 399 246 002 | 405 247 0.05| 405 247 0.01| 401 246 0.01| 203 21.8 0.62
(10) | 494 241 0.02 | 486 242 0.05| 486 242 0.01| 483 242 0.01 | 360 247 0.71
(11) | 354 204 0.05| 351 203 014|351 203 0.03| 351 202 0.01| 294 16.8 045
(12) | 526 239 0.02 | 553 24.0 0.05| 553 24.0 0.01 | 543 233 0.01| 39.2 229 0.68
AVG | 305 206 0.0 292 205 027|292 201 0.03| 289 199 0.01| 175 145 035
MED | 30.3 20.7 006 | 245 203 0.15| 245 201 003 | 243 198 0.01 | 153 14.5 0.33

(AVG) angular errors, their standard deviation (¢), and the mean processing time
of the point-wise computation in milliseconds. The mean and median results on all
scenes are reported in the last two rows.

It can be seen that the optimal method without robust estimation (MV-Opt) is
more accurate except two cases and, on average, one order of magnitude faster than
the competitor algorithms. Even though its errors are the lowest, the difference is
not significant, approx. 0.3 degrees. Since the synthesized tests reported larger dif-
ference, this means that the outlier percentage is high. Overcoming this problem,
the robust algorithm (Robust MV-Opt) obtains twice as accurate surface normals
with similar speed as the competitor methods. In Fig. 3.5, each row shows the result
on a test sequence. The first column is an image from the sequence. The second
and third ones show the reconstructed oriented point cloud rendered from different
viewpoints. In practice, the robust algorithm rejects ~ 60% of the detected points.
For the kept ones, the ratio of the view-pairs considered as inlier is ~ 70% on aver-
age.

Application: Improving PMVS2. In this subsection, we show that combining the
proposed normal estimation technique with the state-of-the-art PMVS2 [66] structure-
from-motion algorithm is beneficial and leads to superior results. PMVS2 has an ini-
tial seed point generation step applied before the dense reconstruction. During this
step, it detects feature points and estimates surface normals applying an iterative
strategy which minimizes a photo-consistency-based cost function. To demonstrate
the accuracy of the proposed method, we replaced this normal estimation step with
the proposed one.

Each row of Table 3.2 is a test sequence. The first block, consisting of four
columns, shows the error of the original PMVS2 w.r.t. the ground truth point cloud
obtained by a laser scanner. The second block reports the results of PMVS2 com-
bined with the proposed approach. The reported properties are: the mean error of
the point cloud (&p, Eucledian distance), its standard deviation (o), the angular er-
ror of the normals (&,, in degrees) and, finally, its standard deviation (oy,). It can be
seen that combining the proposed estimation technique with PMVS2 leads to more
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TABLE 3.2: The accuracy of the oriented point clouds obtained by applying the original

PMVS2 and the one combined with the proposed normal estimation. & is the mean

distance of the reconstructed and the ground truth points and oy, is the standard devia-

tion. &, is the mean angular error (in degrees) of the obtained normals w.r.t. the ground

truth ones, oy, is the standard deviation of the errors. Tests (rows): (1) fountain-P11, (2)

Herz-Jesus-P8, (3) Herz-Jesus-P25 are from [63], (4) books1, (5) books2, (6) bag are from
[64].

PMVS2 PMVS2 + Robust MV-Opt
&p op én On &p op En On
(1) 0.013 0.015 256 19.1 | 0.008 0.011 23.1 18.1
(2) |0.077 0.052 332 227 |0.013 0.018 244 18.7
(3) 0.023 0.028 276 19.8 | 0.016 0.022 23.7 17.6
(4) |0.031 0.048 27.8 19.7 | 0.032 0.051 28.1 19.7
(5) | 0.057 0.063 320 20.6 | 0.053 0.060 313 20.1
(6) | 0.050 0.050 31.8 185 | 0.049 0.050 31.5 18.3
AVG | 0.042 0.043 29.7 20.1 | 0.029 0.035 27.0 18.8
MED | 0.041 0.049 298 19.8 | 0.024 0.036 26.2 18.5

TABLE 3.3: Multiple plane fitting to oriented (1PT) and non-oriented (3PT) point clouds

using PEARL [13] algorithm. The mean misclassification error (ME) in percentage is

reported for each test case (columns; corresponds to Fig. 3.4). The properties of each
scene are in Table 3.4.

| | @ ® (© d) (e)]AVG MED
ME (%) 12.0 23.0 37.0 398 10.9 | 245 23.0

1PT

3PT 164 316 402 36,5 11.8 | 273 316

accurate reconstructions both in terms of the quality of the dense point cloud and
that of the surface normals.

Application: Plane fitting. In this subsection, we demonstrate an application as
the fitting of planes to an oriented point cloud obtained by the proposed technique.
We took several photos of buildings having large flat walls, then points are detected
by ASIFT and the whole system is calibrated using OpenMVG [67] with a priori
intrinsic camera parameters. Points are assigned manually to planes or the outlier
class, i.e. points not belonging to any dominant planes, to have a ground truth clus-
tering. The properties of each scene are written in Table 3.4. We chose PEARL [13] for
multi-model fitting since it has publicly available source code and can be considered
as a state-of-the-art technique.

Table 3.3 reports the clustering results of each column in Fig. 3.4. The first row of
the table denotes the test case. The second and third rows show the results of PEARL
generating the initial model-hypotheses exploiting the surface normals (1PT) or not

TABLE 3.4: The properties of multi-plane fitting scenes. The point number (1st row),
plane number (2nd row) and outlier percentage (3rd row) are reported for each test case
(columns, corresponds to Fig. 3.4). The clustering results are in Table 3.3.

| (@ (b) (c) (d) (e)

Point# | 3257 2105 4391 2758 1749
Plane # 6 6 8 6 5
Outlier % | 16% 15% 31% 11% 21%
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(8PT), respectively. The error is the misclassification error (ME), i.e. the ratio of the

misclassified points:
#Misclassified Points

#Points

It can be seen that applying PEARL to oriented point clouds leads to the most accu-
rate results in all but one case.

ME =

(e)

FIGURE 3.4: Multi-plane fitting results. First row shows obtained 3D point cloud. Col-
ors denote planes. Second row consists of an image of each sequence.

3.1.4 Summary

In this section, we propose an optimal method for two-view surface normal estima-
tion, then it is extended to multiple views. The method estimates a normal for each
affine correspondence individually, and its robust version is able to deal with ap-
prox. 60-70% outlier ratio. It is superior to the state-of-the-art both in synthesized
tests and on publicly available real datasets. Comparing with other components of
a structure-from-motion pipeline, the technique has negligible time demand despite
the pair-wise term since the coefficient computation is efficient and only the obtained
polynomial equation has to be solved. Usually limited number of views are given, at
most 10—20, where a point can be tracked. Therefore, it is very rare to have problems
for which the computation lasts even for a few milliseconds. In our C++ implemen-
tation the processing time of 100 views is ~ 7 milliseconds. However, aiming at real
time capability for thousands of point sequences, both the coefficient calculation for
each view and the processing of each point sequence can be parallelized and im-
plemented on GPU straightforwardly. Exploiting the obtained oriented point cloud
in PMVS or multi-plane fitting applications is beneficial and leads to significant im-
provement in accuracy as it is demonstrated experimentally.

3.2 Point-wise Homography Estimation

Understanding the surrounding environment is an important goal of computer vi-
sion. This problem can be approached from several directions: as the urban scenes
and most of the man-made objects usually consist of planes or planar-like surfaces,
one of the most popular ways is to segment the observed scene into planar regions.
There is a high number of applications exploiting this information such as 3D recon-
struction [68], [69], camera calibration [70]-[72], augmented reality [73], robot vision
[74], indoor navigation [75]. A good example for such an indoor environment is the
office where the dominant objects are tables, chairs, partition walls, or an ordinary
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home also contains several planar surfaces. As a part of complex pipelines, homog-
raphy estimation is frequently used for detecting scenes which are degenerate for
fundamental matrix estimation.

In stereo vision, a plane correspondence between two images is described by the
so-called homography matrix which is a P? — P? perspective transformation. It
can be estimated in several ways as it is discussed by [76] in deep. The most popular
algorithms are based on point correspondences such as the well-known normalized
4-point algorithm [43] or three correspondences are also enough if the fundamental
matrix is estimated beforehand [43]. However, more complex input data can also be
exploited, e.g. line [43], region [77], contour [78], conic [79], [80], or affine correspon-
dences [5].

This section addresses the problem of point-wise homography estimation from
a set of point correspondences satisfying the epipolar constraint and the related lo-
cal affine transformations. Nowadays, the acquirement of local affinities are not
a real challenge. Beside the well-known affine-covariant detectors such as MSER,
Hessian-Affine or Harris-Affine [3], some approaches based on view-synthesizing
was recently proposed. Such detectors are ASIFT [2] and MODS [46]. These meth-
ods warp the original images by an affine transformation creating a synthetic view
and apply a feature detector to the transformed images. The local affinity related to
a point pair is given as the multiplication of two transformations: the affinity regard-
ing to the synthetic-view and the one which the applied detector obtains. It is shown
in this section that the usage of these affine-covariant detectors creates a natural way
to point-wise homography estimation. As a side-effect, we compare them and select
the most suitable one for homography estimation.

The contributions are: (i) A novel approach is proposed to estimate a planar ho-
mography from a single affine correspondence. It is applicable to correspondences
satisfying the epipolar constraint. (ii) Affine-covariant feature detectors are com-
pared w.r.t. the accuracy of the estimated homographies and the most precise one
is proposed for further usage. (iii) It is shown that the proposed method makes
multi-homography estimation superior to the state-of-the-art in terms of accuracy.
Applications. The main benefit of point-wise homography estimation is that robust
estimators based on random sampling are significantly faster if the homographies
are estimated using fewer points. Table 2.1 shows the required iteration number
for RANSAC [1]. Parameters g, p, and n denote the desired probability, the inlier
ratio, and the number of correspondences used for the estimation, respectively. For
point-wise estimation (n = 1) significantly less iterations are required.

The proposed point-wise estimation can be applied for multi-homography esti-
mation as it is shown by [27]. Another possible application is surface normals esti-
mation: as point-wise homography estimation determines the tangent plane of the
observed surface, thus its normal can be computed.

3.2.1 Towards Point-wise Homography Estimation

The relationship among a homography, a local affine transformation and the epipo-
lar geometry is shown in this section. Then these are exploited to derive constraints
making the homography estimable from only one affine correspondence.

The setup of the problem is visualized in Fig. 3.6. A plane is given with its two
projections in an image pair. Denote the locations of the projections in their ho-
mogeneous form in the first and second images by p1 = [z1 ®1 1}T and po =
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[zo y2 1]7, respectively. It is well-known in projective geometry [43] that the trans-
formation between the images is a P? — P? perspective homography. A homogra-
phy is approximated locally around a point correspondence by an affine transforma-
tion which transforms the vicinity of the point in the first image to the neighborhood
of the point in the second one.

The input of the proposed method: point locations in stereo images (two coordi-
nates per image), and the affine transformation (four parameters).

Homography Estimation without Fundamental Matrix (HA). We show here that
homography H depends on both the point locations and the related affine transfor-
mation considering the fundamental matrix to be unknown.

Direct Linear Transformation. The relationship of points p; and ps is written as
Hlp; 1] ~[p2 1]T which leads to well-known equations [43]

x1h11 + y1hi2 + hiz — z122h31 — y122h32 — 22h33 = 0,

(3.17)
x1ho1 + y1haa + haz — x1y2h31 — y1y2hza — y2hsz = 0,

where h;; is the element of H in the ith row and jth column. This widely-used
technique [43] is called the Direct Linear Transformation (DLT).

Estimation using Affine Transformations. Local affine transformation A de-
scribes the mapping between the infinitely small area around points p; and p». Sup-
pose that a translation vector [Az; Ayq]"is added to p;. The translation [Azy  Ays]T
which it implies in the second image can be approximated using A as

Axg Al‘l :| [ ay az :|
~ A , A= .
[ Ays ] [ Ay az ay
Consequently, shorter the translation, better the approximation.
The affine parameters can be calculated by the partial derivatives of H [32] as it
is described in detail in Appendix C. The relationship is written as
~ hir — haixo _ har — ha1yo a5 = hia — h3owo hog — h3ayo

ap = ;2 ag = —————, (3.18)
s S S s

where j € {1,2},s = hi[z; u 1]T and hj is the last row of H. By reformulating
Egs. 3.18, the following homogeneous, linear system of equations is obtained:

hi1 — (z2 + a121) h31 — a1y1hza — arhss = 0,

(
hi2 — (
(
(

haa — asx1h31 — ashgz = 0,

)
)
) (3.19)
)

T2 + a2y1
ha1 —

haa — (y2 + asy1) has — asxi1hs1 — ashzz = 0.

Y2 + azx1) h31 — azyihza — azhss =0,

Egs. 3.19 put constraints to all elements of H but h3; and hsy. The original DLT
equations defined in Eq. 3.17 can be combined with these equations obtaining a ho-
mogeneous linear system for estimating all the elements of H. This estimation is
called HA (Homography from Affine transformation) here. The optimal solution in
the least squares sense is obtained as the eigenvector corresponding to the smallest
eigenvalue of matrix BTB, where B is the coefficient matrix of the equation system.
Since each affine correspondence yields 6 equations, at least two correspondences are required
for HA method.
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Note that Kevin Koser [5] also solved this problem using two correspondences.
The advantage of the proposed formulation is its simplicity compared to the method
of Koser.

Homography Estimation using the Fundamental Matrix. The relationship of a
homography and fundamental matrix is shown in this subsection. It is known in
epipolar geometry [43] that

[ea] , H= \F, (3.20)

where ey = [e;1 ey 1T, H, F, and ) are the epipole on the second image in
its homogeneous form, the homography, the fundamental matrix, and an arbitrary
scale, respectively. This formula represents how the fundamental matrix decreases
the DoF of the homography estimation. Note that operator [v]. denotes the skew-
symmetric cross product matrix of vector v.

Usually, this relationship is exploited to make the homography estimable using
three correspondences [43]. In contrast to the common solutions we derive it in a dif-
ferent way since this formulation is easier to use. The last row is linearly dependent
as the rank of [e;] is two. Thereby, it is removed. The remaining formula is

hiir hi2 his

0 -1
R Rl R o L
“ h31 hsza hs3

As a consequence, the DoF is reduced to three since the elements in the first two
rows of H can be expressed by those in the third one (h31, k32, and hs3):

hi1 = eg1hat + Afa1,  hi2 = ez 1hsa + Afaa,  hiz = ez 1hss + Afas,

3.21)
hor = ey1h31 — Af11,  hae = ey1hga — Af12,  hagz = ey 1h3z — Afi3.

Both the fundamental matrix and homography are determined up to an arbitrary
scale. In our algorithms, A = 1.

Estimation using Point Correspondences. An inhomogeneous, linear system of
equations is formed by substituting Egs. 3.21 into the basic formula H[p; 1]T ~
[p2  1]T applied for DLT algorithm as follows:

(x1€2,1 — x122)h31 + (Y1€x1 — Y122)ha2 + (ex1 — T2)h3s =

—r1fo1 — y1.f22 — fos3, (3.22)
(w1ey,1 — 21Y2)h31 + (y1ey,1 — Y1y2)hae + (ey1 — y2)h3s =
x1fir +yifiz + fiz, (3.23)

Due to the epipolar geometry, the point pair has to lie on the corresponding epipolar
lines, thus only one of these equations contain additional information. Even so,
exploiting both of them is preferred to minimize the effect of the noise. Using these
equations, a DLT-like method can be formed, and this is called 3PT in the rest of the
section since it can be solved if at least three point correspondences are given.

Estimation using Affine Transformations (HAF). The information provided by
fundamental matrix F can be exploited to decrease the DoF of the affine transfor-
mation by substituting Egs. 3.21 into Egs. 3.19. To exploit the translation, Eqgs. 3.22
and 3.23 are also added to the system. Thus a linear, inhomogeneous system of equa-
tions is formed as Cy = d, wherey = [h31 h3za hs3]', d = [for foo —fuu —
f12 *xlfgl — Y1 f22 — f23 1 f11 +1 f22 — flg]T, and C are the vector of the unknown
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parameters, the inhomogeneous part, and the coefficient matrix, respectively. C is
as follows:

[a121 + 22 — ez aiyi ay
a2%1 ay1 + T2 — ez 1 as
C— | BT + Y2 — ey asyi as . (3.24)
a4 a4Y1 + Y2 — ey aq4
T1€z,1 — T1T2 Y1€gz,1 — Y122 €x,1 — T2
L T1€y,1 — T1Y2 Yi€y,1 — Y1Y2 €y,1 — Y2

The optimal solution in the least squares sense is obtained as y = C'd, where CT
is the Moore-Penrose pseudo-inverse of matrix C. Since the obtained vector y is
the last row of H, the full homography is calculated using the formulas written in
Eq.3.21.

The four equations of the affine transformation (Egs. 3.19) are linearly dependent,
the epipolar geometry determines the rotation and the scale perpendicular to the
epipolar line as it is proven in [28]. Theoretically, only two of those have to be kept.
The two equations of 3PT (Eqgs. 3.22, 3.23) are reduced to one since the point pair
has to lie on the related epipolar line [43]. Thus we have three linearly independent
equations, two from A and another one from point correspondence, to estimate the
three unknowns. However, in order to minimize the effect of noise, all equations
are considered in the proposed method. As a consequence, the homography can be
calculated from a single affine correspondence.

Note that for HAF algorithm, surface planarity is not required since the method
is capable to estimate the tangent plane related to individual spatial surface points.

Generalization to Arbitrary Point Number (HAF). Every additional affine corre-
spondence yields six constraints (rows) in matrix C and vector d. The optimal so-
lution can be carried out in the same way: y = C'd. To increase the accuracy, data
normalization and numerical optimization are required. These are discussed later.

Theoretical Contribution. Since an affine correspondence, consisting of a local
affinity and a point correspondence as (A, p1, p2), is calculable from the related ho-
mography H, and H is calculable from (A, p;, p2) the theoretical contribution is:

Theorem 1 (Equivalence of Affine and Perspective-invariances). Given an image pair
and a set of point correspondences satisfying the epipolar constraint. Affine-invariance is
equivalent to perspective-invariance, where the latter one denotes invariance to 2D perspec-
tive transformations.

Degenerate Cases. It is well-known that collinearity is a degenerate case [43] for
point-based homography estimation. Even so, this method is based on the full local
affine transformation, therefore, the collinearity of the points are not a degenerate
case. However, if the plane on which the point(s) lies contains the optical axis of any
camera, the homography cannot be calculated. In practice, this is not a real situation
since a point which plane contains the optical axis of one of the cameras cannot be
observed in both views.

3.2.2 Improvements

The aim of the section is to show possible improvements of the proposed method in
order to achieve high accuracy.
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Normalization. Data normalization is a crucial point of homography estimation
because of numerical instability. The normalizing equations for points and funda-
mental matrix are written in Section 2.2.

Normalization of Affine Transformation. Obtaining the normalized affinity A is
not trivial since it depends on the unknown normalized homography H.

The normalizing transformations modify the basic equations written in Egs. 3.18
as follows:

R 2 2

(haix1 + hagyi + h3z) a1r = %hn - %xzhm
. 2 2

(hsix1 + haayr + hsz) G2 = éhn - éthSh
. ! !

(ha1z1 + haay1 + hsz) az = éhu — faoha,
. 12 2]

(haiz1 + hagyr + haz)as = thin — Faaha,

where [} = Tk 11, l’zj = Ty 22 (k € {1,2}) are the horizontal and vertical scales of the
kth normalizing transformation. The left sides of Eqs. 3.25 are the multiplications
of the projective depth and affine parameters in the normalized coordinate system.
After elementary modification, the normalized affine parameters become:

2 2 Lo

~ A~

—1 0o — —L 0 = 2 q- = =
CL]_ - ll a’l? a2 - ll a27 a/3 ll ad’ CL4 ll a4'
T Yy z Y

The resulting homography H is calculated from the normalized one by denor-
malizing: H = T, "HT}.

Robustification. One of the main advantages of the proposed HAF method is that
the minimum point number for the estimation is one. Therefore, the stochastic model
creation stage of the applied robust methods such as RANSAC [1] can be removed.
Considering the RANSAC strategy which maximizes the inlier number, the globally
optimal homography can be found by a simple linear search among the homogra-
phies as follows:

Hope = arg max > I(H,e), (3.25)
i=1

where H and I are the set of the homographies and the function counting the inliers
w.r.t. threshold ¢, respectively.

Remark that this analogy can straightforwardly be applied to other robust meth-
ods such as MLESAC [81], LMeDS [82], ]-Linkage [83], or T-Linkage [84].

Numerical Optimization. Numerical optimization is necessary since Egs. 3.24 are
given as the multiplication of the original equations by their denominators. This op-
eration distorts the original signal-noise ratio, thereby numerical refinement of the
obtained results is required using the original formulas. For that purpose, Levenberg-
Marquardt [85] optimization technique is used to minimize the following affine er-
ror:

8(H7p17p27A) = gA(H7p17p27A) +€L(H7p17p2)

hi1 — ha1u?  his — hgou?
1 11— ha1 12 — haau™|
EallpLpaA) = [hzl — h31v®  hay — h32U2] AH ’ (3.26)
2
&L(H,p1,p2) = ‘%—pz‘ ,




28 Chapter 3. Estimating Planes and their Projections

where £ (overall error) is the sum of errors £4 and &, and s = hgpl is the projective
depth. Error E, is the one yielded by the affine transformations. It is the Frobenius-
norm of the difference matrix of the measured affine transformation and the one
which homography H yields at points p; and p> (Egs. 3.18). Function Ey, is the Lo
norm of the re-projection error. The application of the Frobenious-norm is justified
in Appendix D

Algorithmic Details. The normalized HAF algorithm is written in Alg. 1. Its input
are two sets P; and P, of point correspondences, a set A of local affine transforma-
tions for each point pair and the fundamental matrix F (|P;| = [P2| = | A| > 1). Note
that F can be estimated by e.g. RANSAC combined with the 7-point algorithm [43]
as an engine. The output is the estimated homography H. Due to nature of data
normalization, it is undefined for less than two correspondences — this condition is
written in the first line of Alg. 1. For robust estimation, this algorithm is inserted
into a robust method, e.g. RANSAC.

Algorithm 1 Normalized HAF
Input: P, P, — points in the first and second images, A — local affine transforma-
tions, F — fundamental matrix
Output: H — homography

if |P1| > 1 then > Normalization is undefined for one correspondence
P1, P2, A, F := NormalizeData(P;, P, A, F)

: C, d := BuildCoefficientMatrix(P1, P2, A, F); > Eq. 3.24

x:=Cld > is the Moore-Penrose pseudo-inverse

: H := HomographyFromFundamentalMat(z, F) > Eq.3.21

g @

3.2.3 Experimental Results

It is presented in this section that the proposed method is applicable to both syn-
thetic and real world data. A potential way is proposed to provide input data using
real images, and it is shown that HAF makes the multi-homography estimation less
ambiguous.

Synthesized Tests. Generating a synthetic scene, two perspective cameras were
generated by their projection matrices p; and p2. The fundamental matrix was com-
puted using the two projection matrices [43]. Their positions were restricted to plane
z = 60 (see Fig. 3.7(a)). The common focal length and the principal point were
setto f, = f, = 600 and py = [300 300]T. Then 50 points were sampled from a
random plane passes over the origin and projected onto the cameras. Zero-mean
Gaussian noise was added to the point coordinates. The affine transformations were
calculated from the noisy point locations and the ground truth homography using
Egs. 3.18. Methods were applied to these correspondences. Tests were repeated 5000
times on each noise level.

The three competitor methods were the normalized DLT?, normalized 3PT, and
normalized HA methods*. Note that 3PT (Eqs. 3.22, 3.23) is constructed similarly to

*It is implemented in OpenCV 3.0.
‘nttp://web.eee.sztaki.hu/~dbarath/
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the original three-point algorithm [43], and HA (Egs. 3.19) is similar to the proposed
method by [5]. The point-based algorithms (DLT and 3PT) were followed by a nu-
merical refinement stage minimizing the re-projection error (based on Hp; ~ p2)
by Levenberg-Marquardt [85] optimization technique. HA and the proposed HAF
methods also use Levenberg-Marquardt optimization to minimize the affine error
given by Eq. 3.26.

Fig. 3.8 shows the mean and median errors (vertical axis) of each method w.r.t.
increasing noise level (horizontal axis). HAF method outperforms the competitor
ones in both aspects. The mean diagram shows that normalized DLT becomes very
unstable in several cases, while the other point-based method (3PT) is stable due to
the fundamental matrix.

The top-left (mean error) and top-right (median error) charts of Fig. 3.9 show the
effect of the proposed normalization for increasing noise. The normalized version of
HAF is significantly more stable then the original one. The bottom-left chart shows
the average processing time (in milliseconds) of each method plotted as the func-
tion of the point number. Even though HAF is the slowest one, its time demand
is approx. 0.004 sec for one thousand points. Therefore, it is still applicable to real
time tasks. The bottom-right figure visualizes the effect of different view-angles. For
that test only one correspondence was considered, therefore, only HAF method was
applicable. The plane on which the observed point lies was the X Z plane. The cam-
eras were placed on the surface of a 60-unit sphere around the origin and looked at
the observed point (see Fig. 3.7(b)). The horizontal axis of the chart represents the
view-angle. If it is 0°, both cameras are in the same position over the observed point
(at the top of the sphere). As the view-angle getting higher, the cameras are getting
lower on the sphere. It can be seen that the method is sensitive to high view-angle,
where the observed plane is nearly perpendicular to the view-plane. Even so, this
sensitivity is significant only over 60 — 70° which is a challenging case for feature
detectors as well.

Affine-covariant Feature Detectors. There are many affine-covariant feature de-
tectors [57] available in the field such as MODS [46]°, ASIFT [2], ASURF, AAKAZE,
ABRISK, AORB, AHessian-Affine®, Harris-Affine, Hessian-Affine [3], MSER [86]’,
etc. They obtain an affine transformation A¥ for the kth point in the ith image
(i € {1,2}). Then the affinity which transforms A¥ in the first image to A% in the
second one as A*A¥ = A% is as follows: A¥ = AK(A¥)~L.

In order to test the quality of the detectors w.r.t. the estimated homography, the
publicly available AdelaideRMF dataset® was used. It consists of point correspon-
dences and a label for each which denotes the plane to which the point is assigned.
All affine-covariant detectors were applied to every image pair. The related homo-
graphies were estimated for all of the obtained correspondences using the proposed
HAF method. The closest annotated homography is assigned to each point pair. If
the projection error from the closest homography is higher than 1.0, the correspon-
dence is discarded from the evaluation.

Shttp://cmp. felk.cvut.cz/wbs/
*http://www.ipol.im/pub/art/2011/my—asift/.

Each detector - AKAZE, BRISK, ORB, SIFT, SURF, Hessian-Affine —
replaces SIFT in the view-synthesizer.

"MSER, Harris-Affine, and Hessian-Affine are downloaded from
http://www.robots.ox.ac.uk/~vgg/research
®http://cs.adelaide.edu.au/~hwong/doku.php?id=data
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TABLE 3.5: Mean re-projection errors of Hypr homographies per annotated plane on test

pairs (a — i) from AdelaideRMF dataset. Columns N, Cvg. and T are the average num-

ber of points, the percentage of the coverage, and the processing time (in seconds) of

each method, respectively. Coverage is the number of planes for which the detector ob-

tains at least one point correspondence divided by the ground truth plane number. Test

pairs: (a) hartley, (b) johnsonnb, (c) neem, (d) sene, (e) oldclassicswing (f) ladysymon,
(g) napierb, (h) bonhall, (i) unihouse, (j) elderhalla.

N Cg. T[[@ ® © @ © O @ ® O ( [aeg med
AAKAZE 258 94% 82| 32 286 42 103 46 34 36 43 31 133 77 43
ABRISK 338 96% 8123 103 37 29 36 37 75 20 15 47 42 3.7
AHES-AFF || 1553 100% 89|19 45 24 21 14 15 33 17 14 33| 23 20
AORB 117 83% 86|38 160 94 34 34 71 123 35 42 144 | 75 63
ASIFT 2468 99% 81|16 25 1.8 18 11 30 28 11 13 32| 2.0 1.8
ASURF 1183 100% 84 || 2.1 43 36 25 12 15 29 15 24 32| 25 25
HAR-AFF 79 97% 41| 2.8 42 26 27 31 5.6 33 35 25 56|l 35 32
HES-AFF 66 81% 3|28 54 22 34 17 26 35 69 28 35| 34 29
MODS 846 99% 53|60 49 26 32 09 15 49 19 22 39| 32 3.0

Fig. 3.10 shows the mean projection error of each method. The blue bars are the
average projection errors of all obtained homographies. The red ones are the average
projection errors of homographies Hopt (Eq.3.25), each is associated to a plane. It is
interesting that the best method is different w.r.t. these two aspects. AHessian-Affine
and Hessian-Affine yield the most accurate homographies on average. Even so, the
lowest error of each Hopt is achieved by ASIFT [2]. This is caused by the number
of detected correspondences since ASIFT yields the most (Table 3.5). Therefore, the
probability of measuring a very precise estimate is even higher.

Table 3.5 shows the errors of the obtained H,pt matrices of each affine-covariant
detector. The error value is the mean of the projection errors computed from the
point correspondences on the annotated planes with the related Hopt. As it is also
presented in Fig. 3.10, the most accurate Hop homographies are carried out by ASIFT
feature detector.

Multiple Homography Estimation. Even though this main section does not ad-
dress accurate multi-homography estimation, we show that the usage of these point-
wise homographies reduces the ambiguity of this problem.

Most of the multi-model estimation algorithms are based on stochastic model
creation [13], [83], [84]. They differ in the way how they use these randomly selected
models. Stochastic sampling is essential to create hypotheses since models are often
estimated using many data points. By the usage of the proposed method this step
can be omitted in the case of multi-homography estimation because a homography
is given for every single correspondence. Therefore, the resulting method is not based
on random sampling, it is deterministic.

In order to demonstrate the advantage of this property, we replaced the model
creation stage of T-Linkage [84]° with the obtained models of the proposed method.
T-Linkage can be considered as one of the state-of-the-art multi-model fitting tech-
niques. The top row of Fig. 3.11 shows the obtained planes by including the well-
known 4-point algorithm [43] into T-Linkage. The bottom row visualizes the result-
ing segmentation by HAF method. Each column consists of the first image of an
image pair from AdelaideRMF dataset. Even though that neither segmentations are
perfect, the one uses HAF method to model estimation obtains significantly more

‘http://www.diegm.uniud.it/fusiello/demo/jlk/
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accurate results. The same parameter setup is used for both cases. Points which are
assigned to no plane are not visualized.

3.24 Summary

A method is presented in this section to estimate a planar homography from a sin-
gle affine correspondence. The method is extended to the overdetermined case. It
is shown that it outperforms the competitor methods on synthesized data. In order
to apply it to real world image pairs, the available state-of-the-art affine-covariant
feature detectors are compared to each other w.r.t. the accuracy of estimable homo-
graphies. On average, AHessian-Affine and Hessian-Affine obtain the most accurate
point-wise homographies. However, ASIFT is the most robust method due to the
large number of detected points. Finally, it is presented that the usage of these point-
wise homographies makes multi-homography estimation process less ambiguous.

3.3 Homographies using Partial Affine Correspondences

Estimating planar correspondences is a crucial part of several vision tasks e.g. robot
vision [74], [87], camera calibration [70]-[72], 3D reconstruction [68], [69] and aug-
mented reality applications [73]. Even though the most popular estimation tech-
niques are based on point correspondences [88], a homography is estimable from
line [88], region [89], contour [78], or affine correspondences [5], [30], [90]. Most
of these algorithms include data normalization [88], and numerical optimization to
minimize the effect of the noise. In this section, we assume that not only the point
locations but several affine components and the fundamental matrix are known. !’

Local affine transformations have become more popular in the last decade. Matas
et al. [91] presented that local affinities can support stereo matching. The 3D camera
pose can also be estimated using a corresponding point pair and the related affinity
as it is proposed by Koser and Koch [92]. These transformations can facilitate the
recovery of spatial point coordinates [5]. Current 3D reconstruction pipelines ex-
ploit point correspondences as well as patches [9], [66], [93] to compute realistic 3D
models of real-world objects. Bentolila et al. [94] proved that affine transformations
put constraints on the epipoles in stereo images. Barath et al. [32] showed that a
one-to-one relationship exists between the surface normal and the local affinity.

Even though local affine transformations are useful and can significantly im-
prove the quality of the estimation, it is time consuming to recover them — e.g. by
affine covariant detectors which cannot be applied in real time. Even so, most of the
detectors obtain some part of these local affinities, such as SIFT [95] or SURF [96] re-
covering the rotational and scale components. Therefore, using solely the translation
part (the point location) causes information loss. The motivation of this research is
to formulate a general theory about the usage of the affine components obtained by
partially affine covariant feature detectors. The main contributions are as follows:
(i) A general theory to exploit the affine components obtained by partially affine co-
variant detectors which is real time capable. (ii) The proposed method estimates the
homography from two SIFT correspondences if the fundamental matrix is known.
To our knowledge, the minimum number of required correspondences was three
before this work.

The pre-estimation of the fundamental matrix for rigid scenes using point correspondences is a
usual step in computer vision pipelines. The proposed theory is straightforward to generalize for
multiple rigid motions.
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3.3.1 Homographies and Partial Affine Transformations

In this section, we show that the homography estimation problem becomes much
simpler if the epipolar geometry and local affine transformations are known.

Homography from Affinities. Asitis shown in the Homography from Affine trans-
formation and Fundamental matrix (HAF) method [30] the estimation of a homog-
raphy can be written in an inhomogeneous, linear form if at least one local affine
transformation and the epipolar geometry is known. The coefficient matrix C is as
follows:

a11371 + 952 afuyi ail
C— |t o “12“51 e (3.27)

a5 o] + Yy — as1y; Ay

Upoyl + Y3 — €y A5T] Ay
The equation system can be formed as Ck = d , where vector d = [fa1 fa2 —
fir — fi2]" is the inhomogeneous part while k = [h3; hza  has]! is the vector of

the unknown parameters. The optimal solution in the least squares sense is given
by k = Ctd, where CT is the Moore-Penrose pseudo-inverse of matrix C. Note that
augmenting this system with the formulas regarding to the point locations (Egs.
3.22, 3.23) leads to more robust estimation.

Affine Transformation Model. Let us denote the affine transformation related to
the ith (i € [1, N]) point pair without the translation part as follows:

Al — a’il a’iQ _ cos(af) —sin(o_/) st w‘i _
aby aby sin(e’) cos(a’) | |0 s

| ‘) y (3.28)
st cos(a?)  wcos(at) — s sm(a )
Lé sin(a’)  w'sin(at) + st cos( )}

Variables o, si y, and w' are the rotational angle, scales along = and y axes, and
the shear parameters, respectively.

Homography from Partially Known Affine Transformation. It is shown here that
not the full local affinity is necessary for homography estimation, but their parts —
obtained by e.g. SIFT or other partially affine covariant detector — can also be ex-
ploited. In the rest of this section, the proposed method is called P-HAF as the abbreviation
of Partial HAF. Let us substitute Egs. 3.28 into Eqgs. 3.27 as

h31 (sz cos(a’)zl + ah — eg) + haash cos(a)y} + hazsh, cos(a') = for, (3.29)
hso ((wZ cos(at) — 5; sin(af))yt + 24 — e )+

tcos(al) — sy sin(a?)) = fao,
ha (sl sin(a’)a} + y5 — ey) + haas), sin(a )3/1 + hggslsin(a’) = —fi1,  (331)
hso ((wZ sin(a’) + s cos( Nyt +v? — ey) +

hay (w'sin(at) + s; cos(a’))x} + ha3(w'sin(a’) + s cos( ) = —fio.

. - AN (3.30)
hg1(w" cos(a’) — sy sin(a’))x] + hgs(w

(3.32)

These four equations contain the affine transformation in an easy-to-handle form.
For a given part of the affinity, e.g. rotation and scale, the appropriate equations can
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be selected and used. After the selection, the given system is linear, inhomogeneous
and can straightforwardly be solved.

Specialization to SIFT Features. The popular SIFT [95] detector obtains rotation
and scale covariant features, therefore, the proposed theory can be specialized to use
SIFT. Beside the point locations, the rotation and the scale is given for each feature
point. After the matching process, the related parts of the local affine transformation
are as follows: 5

S = —, o = g — O,
S1

where 51, 52, a1, and ay are the scales and angles in the two images, respectively.
Here, we assume s as horizontal scale, thus only Egs. 3.29 and 3.31 have to be kept.
Even though one SIFT correspondence yields three equations — one from the loca-
tions and two from the affinity —, the two regarding to the affine parts are linearly
dependent. As a consequence, two SIFT correspondences are enough for homography esti-
mation — and the system has been already overdetermined.

For n > 2 point pairs, an overdetermined, inhomogeneous, linear system is
formed.

Normalization. Asitis well-known, normalization of the input data is a usual and
important part of homography estimation [88] due to the numerical instability. Let
us denote the normalization transformations by T; and T> where the normalized
homography is calculated as H = ToHT !. The transformation matrices T; and T
are special affine transformations: they consist of translation and scale. The horizon-
tal and vertical scales of the two transformations are denoted by I¥ and I (k € {1,2}),
respectively. The normalization of the fundamental matrix and the point coordinates
is written in the previous section. We discuss here, how the affine components have
to be normalized.

As it is shown in the previous section (see Eq. 3.25), the affine components are
modified as follows:

ay = (I3/1) aty,  ais = (13/1y) ale, a5 = (I5/13) aby,  ahy = (15/1) aby.
The normalized affine transformation modify Eqs. 3.29-3.32 as
hs1 (s; (li/li) cos(ay )z} + 't — ex) +
(12/12) (hsasl, cos(a;)yi + hassh cos(ay)) = for, (3.33)
hsa ((wi cos(ay) — s; sin(ay)) (li/ly) yh +ah — ez) +

(lg/l;) hs1(w; cos(ay) — sé sin(ay))xt +

(lft/l;zl/) hgg(wi COS(ai) — S; sin(ai)) = f22, (334)
(l;/l;) hs31 (s; sin(a;)z] + y5 — ey) +
(l;/l;) (thSzm sin(ai)yi + h338; Sin(a») = —f11, (3.35)

(lz/l;) hs2 ((w; sin(a;) + s; cos(ay))yt + yb — ey) +
(li/l;) hs1(w; sin(ay) + S; cos(ay))xt +
(l;/l;) has(w; sin(ay) + s; cos(a;)) = — f12. (3.36)
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TABLE 3.6: The processing time (in milliseconds) of normalized P-HAF - including

normalization — implemented in Matlab and C++. The first row shows the time of P-

HAF applied to a minimal subset — two correspondences. The second one reports the

mean time on all pairs of the AdelaideRMF and Multi-H datasets. On average, P-HAF
is applied to 27 SIFT point pairs as an overdetermined system.

Matlab (ms) C++ (ms)
2 points 0.336 0.005
N points 1.106 0.012

If the system is combined with equations of the 3-point algorithm (Egs. 3.22, 3.23),
an inhomogeneous, linear system of equations is obtained. Note that the normalized
correspondences and F are used in Egs. 3.33—- 3.36.

Algorithmic Details. Alg. 2 shows the P-HAF algorithm specialized to SIFT fea-
tures. The required input is a set of point correspondences P and the related com-
ponents rotation R and scale S, for each. The output is the homography.

Algorithm 2 P-HAF for SIFT points
Input: P — points on the first and second images

R, S — rotation and scale for each point pair
F — fundamental matrix
Output: H — homography

1: P,R,S := Normalization(. . .);

2: C,d := BuildCoefficientMatrix(. . .); > Egs.3.29,3.31
3. k:= Ciq; > T is the Moore-Penrose pseudo-inverse
4: H := HomographyFromFundMat(z, F);

Processing Time. The processing time of the proposed algorithm depends on the
solution of the inhomogeneous, linear system which can be carried out via its Moore-
Penrose pseudo-inverse. On a serial processor its time complexity is O(m?) + O(r3)
where m and r are the row number of the coefficient matrix A and its rank, re-
spectively. Remark that it is reduced to O(m) + O(r?) in parallel computing [97].
Therefore, P-HAF is computable in a few milliseconds (see Table 3.6).

Time demand of RANSAC. Augmenting RANSAC [1] or other robust methods
with P-HAF significantly reduces the iteration number, thus higher processing speed
is achieved. Table 2.1 reports the required iteration number [88] of RANSAC to
converge using different minimal methods as engine.

It can be seen that using two points leads to significantly less iterations, thus speed-
ing up the process, especially for high outlier ratio.

3.3.2 Experimental Results

The aim of this section is to show that the proposed theory works both on synthetic
and real world data. All algorithms ended with a numerical refinement stage using
Levenberg-Marquardt optimization technique [85] to minimize the re-projection er-
ror. The competitor methods are the Direct Linear Transformation (DLT) and Three
Point Method (3PT) applied to normalized data.
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TABLE 3.7: The mean re-projection error (in pixels) of the methods applied to the Ade-
laideRMF and Multi-H datasets. Each row represents an image pair and each column
consists of the re-projection errors of a method. Homographies are estimated using
the 25% of the correspondences, re-projection error is computed w.r.t. all of them. Test
pairs: (1) barrsmith, (2) bonhall, (3) bonython, (4) boxesandbooks, (5) elderhallb,
(6) glasscasea, (7) glasscaseb, (8) graffiti, (9) johnssona, (10) johnssonb, (11)
library, (12) napiera, (13) napierb, (14) neem, (15) nese, (16) sene, (17) unihouse, (18)
unionhouse.

O @ 6 @ 6 6B @ © © 1) 1) (12 @3 14 15 @16 @17) (18) | avg med
P-HAF [270 10 13 21 47 79 96 09 108 53 48 150 177 43 44 41 88 7.0 | 76 51
DLT | 360 08 14 85 53 268 213 10 104 63 60 145 306 54 69 79 54 75 (112 72
3PT [272 10 14 21 52 96 80 10 113 57 50 178 173 56 47 47 56 70 | 78 56

Synthesized Tests. For synthesized testing, two perspective cameras are generated
by their projection matrices P; and P,. Their positions are randomized — using
uniform distribution — on a plane represented by function S.(u,v) = [u v 60]T,
(u,v € [-20, 20]). Both cameras point towards the origin. Their common focal length
and principal point are 600 and [300 300]", respectively. Fundamental matrix F is
computed from projection matrices P; and P [88].

A plane passing through the origin is generated with random orientation and
sampled in 50 different locations — these points are projected onto cameras P; and
P,. Zero-mean Gaussian-noise is added to the point coordinates. The local affinity
related to each point pair is calculated from the plane parameters [30] and the noisy
point locations, then decomposed into the form

sz cos(ay)  wcos(a) — s, sin(a)

A= spsin(a;)  wsin(a) + s;, cos(a)

)

and angle ¢, scale s, are kept. Tests are repeated 500 times on every noise level.

Fig. 3.12(a) and Fig. 3.12(b) visualize the mean and median errors of the nor-
malized DLT, 3PT and P-HAF methods plotted as the function of the o value of the
zero-mean Gaussian-noise. P-HAF achieves the lowest mean and median errors.
Fig. 3.12(c) shows the effect of the normalization. Even though the difference is not
significant, the normalized algorithm is the most accurate estimator.

Homography Estimation. In order to test P-HAF on real world images Adelai-
deRMF [98] and Multi-H [27] datasets are used. They consist of images of different
sizes and point correspondences assigned to planes. Figure 3.13 shows four exam-
ple images, the first one from each stereo pair, from the datasets. The left column is
from Multi-H, pairs boxesandbooks and glasscasea, and the right one from Adelai-
deRMF — pairs elderhalla and bonhall. Points are painted by circles and each is
assigned to a plane by color.

Annotations contain no information about the rotational or scale components,
therefore, SIFT detector is applied to each image pair. Then the closest detected
feature is paired to every annotated one. If the distance is greater than 5 pixels the
point pair is omitted from the evaluation. The fundamental matrix F is estimated
by the RANSAC eight-point technique [88] with threshold value set to 1.0 followed
by a Levenberg-Marquardt optimization minimizing symmetric epipolar distance.
Every homography is estimated using the 25% of the correspondences, however, the
reported re-projection errors are computed using all of them.

In Table 3.7, the mean re-projection errors (in pixels) are reported. Columns rep-
resent different test pairs from the AdelaideRMF and Multi-H datasets, rows show
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the related errors. It can be seen that the mean errors of P-HAF and 3PT are quite
similar, even so, P-HAF is slightly better. The median error of P-HAF is significantly
better than that of DLT and 3PT. This is expected since DLT and 3PT use a smaller
part of the underlying affine transformation — the translation — while P-HAF exploits
all the available information.

Multiple Homography Fitting. One of the main advantage of P-HAF is the re-
quired minimal point number as it is able to estimate a homography from only two
SIFT correspondences. DLT needs four and 3PT three of those. Most of the robust
model fitting techniques, e.g. RANSAC, are based on minimum subsets consisting
of the minimum number of data to estimate a given model. Using as few data as
possible makes the estimation faster, less ambiguous, and possibly more accurate.

In this section, a multi-model fitting technique, PEARL [13], is augmented with
different model initialization methods: normalized DLT and P-HAF. We used the
same datasets as in the previous experiments, AdelaideRMF and Multi-H. Adelai-
deRMF mainly consists of buildings while Multi-H smaller planar objects.

Fig. 3.14 shows the results of multi-homography fitting. Each row consists of the
first image of a selected test pair. The left column shows the original image and the
other ones report the obtained planar labellings obtained by PEARL with different
hypothesis generation techniques: normalized DLT (middle) or P-HAF (right). The
same parameters are used for all the tests and the same amount of hypothesizes
are generated. The reported misclassification error (ME) is the ratio of the points
assigned to wrong plane in percentage. It can be seen that PEARL augmented with
P-HAF is significantly more accurate then the one using normalized DLT.

3.3.3 Summary

A novel minimal method is presented in this section to improve the general point-
based homography estimation by exploiting the information yielded by the com-
monly used feature detectors. The proposed P-HAF method is able to estimate the
homography using at least two SIFT correspondences and applicable in real time.
The main message of this section is that usually there are more information about
the underlying homography than only the point coordinates — e.g. SIFT, SURF obtain
the rotational component and the scale as well. Neglecting this information yields
information loss. We see no reasons to use the four-point algorithm instead of P-HAF for
rigid scenes if SIFT or SURF features are given.
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g ‘\é"

(c) books?2 (Pusztai)

(f) herz-jesus-p25 (Strecha)

FIGURE 3.5: Example results from each dataset. The first column is an image from the
sequence, the remaining ones show the estimated normals (blue lines) and the triangu-
lated points (gray patches) from different view-points.
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FIGURE 3.6: Two projections of a 3D point lying on the gray plane. Vectors p; and
p2 denote the projections in cameras K; and K,. Affine transformation A maps the
infinitely small vicinity of point p; to that of po. The goal is to estimate the homography
corresponding to the plane if the locations p1, p; and affine transformation A are given.

C’

(@) (b)

FIGURE 3.7: (a) The setup of the synthesized tests. The cameras K; and K lie on plane
z = 60. They observe a random plane passes over the origin. (b) The setup to test the
sensitivity w.r.t. view-angle . The cameras lie on the surface of a sphere around the

observed patch.
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use normalized data and followed by a numerical refinement stage using Levenberg-
Marquardt optimization.
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FIGURE 3.9: (Top-left) The effect of the normalization is shown w.r.t increasing noise

level (horizontal axis). The vertical axis denotes the mean re-projection error in pixels.

(Top-right) The median errors of the normalized and original HAF. (Bottom-left) The

processing time in milliseconds of each method plotted as the function of the point
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the Hpt ones for each plane (red) are shown for every tested affine-covariant detector.
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FIGURE 3.11: The obtained planar partitionings by T-Linkage using the 4-point (top)

and the proposed HAF (bottom) methods. Each column represents a different test pair.

The same parameter setup is used for both of them. Planes are denoted by different
colors, points which are assigned to no plane are not visualized.
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FIGURE 3.12: Re-projection error (vertical axis) calculated from 500 tests on each noise
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FIGURE 3.13: Example images from the image pairs of Multi-H (left column) and Ade-
laideRMF (right column) datasets. Points are marked by circles and planes by color.
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(d) Test: napierb. 1. Original image, 2. by DLT (ME = 38.22%), 3. by P-HAF (ME = 23.17%)

FIGURE 3.14: The results of multiple homography fitting to point correspondences.
Each row is the first image of a test pair from AdelaideRMF dataset and the results of
PEARL. Columns reports the obtained planar labellings of PEARL method with differ-
ent hypothesis generation techniques: normalized DLT or P-HAF. The same parameters
are used for all the tests and the same amount of hypothesizes are generated. The re-
ported misclassification error (ME) is the ratio of the points assigned to wrong plane in
percentage. Points are painted by circles and planes marked by color.
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Chapter 4

Epipolar Geometry and Affine
Correspondences

4.1 Introduction

The objective of this chapter is to establish the direct relationship of epipolar ge-
ometry and affine correspondences. Then exploiting the proposed theory, we show
how a local affine transformations can be corrected, w.r.t. the epipolar geometry, in
closed-form minimizing a cost function which considers the Ly distance of a mea-
sured affinity and the constraints of the epipolar geometry. In the second section, we
show that two correspondences are enough to estimate the essential matrix. Then,
in the third one, we deal with simultaneous fundamental matrix and focal length es-
timation assuming the semi-calibrated case, i.e. all intrinsic camera parameters are
known except a common focal length.

4.2 Relationship of the Epipolar Geometry and
Affine Correspondences

In this section, we show the direct relation of epipolar geometry and local affinities.
Directness means in we do not derive the problem exploiting homographies but
show the exact effect of affinities on epipolar lines.

4.21 Normal of the Epipolar Line

To consider the direct connection, a possible way is to investigate the effect of lo-
cal affinity A on the epipolar lines going through the related point pair (p1,p2) as
follows:

Lemma 1 (Constraints on the Normals of Epipolar Lines). Given a local affine trans-
formation A transforming the infinitely close vicinities of the related point pair. The normals
of the corresponding epipolar lines are n; and ny. Matrix A is a valid local affine transfor-
mation if and only if A~Tn; = —n,.

Proof. Itis trivial that affinity A transforms the direction of the corresponding epipo-
lar lines to each other as Av; || vo, where v, and vy are the directions of the lines on
the two images (see Fig. 4.1(a)). It is well-known from Computer Graphics [99] that
this is equivalent to A~Tn; = fny, where n; = (FTpy)1.0 and ny = (Fp1)1.2 are the
normals of the epipolar lines (8 # 0). Note that lower index (1 : 2) denotes the first
two elements of a vector. We prove here that

A Tny =fBny, B=-1. (4.1)
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(a) The compatibility constraint for orienta-  (b) The compatibility constraint for scale states
tion states that Avi||ve which is equivalent to  that the ratio of ||p1 — qi||2 and d» determines
A "ny||ns. the scale of the related local affine transformation

perpendicular to the epipolar line.

FIGURE 4.1: EG-Consistency compatibility constraints for orientation and scale. Ma-
trix A is the affine transformation, vectors v and n; are the direction and normal of
epipolar line on which point py, lie in the kth image (k € {1,2}).

We are given a corresponding pointpairp; = [z1 31 1JTandpa = [72 v 1]T.
Letn; = [ni, nlvy]T and ny = [ng, n27y]T be the normal directions of epipolar
lines 11 = FTp2 = [ll,a ll,b ZLC]T and 12 = Fp1 = [12,(1 lg,b ZQ’C]T. It is well-
known that A~Tn; = 8ny due to Av, || vo, where 3 € R is a scale factor.

First, the task is to determine how affinity A transforms the length of n; if |n;| =
Ina| = 1. Introduce point q = p + dn;, where § € R is an arbitrary scalar value. This
new point determines an epipolar line in the second image as 1, = Fq = F(p; +
ony) = [ly, 15, 5" Scale 3 is given by distance dy between line 15 and point p,
(see Fig. 4.1(b))7. The calculation of distance d5 is written as follows:

_[s1,a%2 + s2py2 + 53¢

b
2 2
\/ 51,0 T 52

Point ps lies on 13, which can be written as I3 4z + l2 py2 + l2.. = 0. This fact reduces
Eq. 4.2 to

do Sik = log + 0 fiitni e + 0 fionay, (4.2)

i€{1,2,3}, ke{a,b,c}.

_|3172 + 52y2 + 53]
B \/82+82 ’
1 2

where §; = dfiini gz + dfianiy,t € {1,2,3}. To determine $, the introduced point g
has to be moved infinitely close to p (6 — 0). The square of 3 is then written as

da (4.3)

200 51 + 53
£ = lim — = lim — _ —-
5—0d5  6—0 |$122 + S2y2 + S3]

After elementary modifications, the formula for scale 3 is

/ ! ! !
Lalte T 000

(|$122 + S2y2 + S3])°

where 5; = fiini . + fioniy, @ € {1,2,3}. Therefore, we can calculate 3 for unit length
normals.
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Consider the case when normals are kept in their original form and not normal-
ized (Jn;| # |n2| # 1). The normalization indicates the following formula

—L = Bn.. (4.4)

The epipolar line corresponding to point p; is parameterized as [la, lop L] =
Flz1 y1 1]T. Therefore, its normal is: ny = [ly, lg,b]T = (Flz1 n I]T)(m).
Similarly, n; = (FT [z o 1}T)(1:2). The denominator in Eq. 4.4 for computing j3

is rewritten as |n| = , /i? , 4 2. The numerator is as follows:

51T + S2Y2 + 53 =
niz(fuize + farye + f31) + niy(fieze + forye + f32) =

Thus B = £|n;|/|n1|?> = +1/|n;|. Therefore, Eq. 4.4 is modified to A~ Tn; = 4n,.
Since the direction of the epipolar lines on the two images must be the opposite of
each other, the positive solution is omitted. The final formula is: A Tny=—n,. O

4.2.2 Linear Equations

The normals of the epipolar lines are expressed from F as the first two coordinates
of the epipolar lines: n; = (11)(1.2) = (Fp2)(1.2y and nz = (12)(1.9) = (Fp1)(1.2) [88],
where the lower indices select a subvector. Therefore, Eq. 4.1 is written as

AT (F'py)12) = —(Fp1) 12
and forms a system of linear equations consisting of two equations as follows:

(2 + anx1) fi + anyifo + a1 fz + (y2 + ao121) fa + a21y1 f5 + ao1 fo + fr =0, (4.5)
a2z f1 + (x2 + a12y1) fo + a12f3 + a2z fa + (Y2 + agyn) f5 + asafe + fs = 0. (4.6)

Thus each local affine transformation reduces the degrees-of-freedom by two.

4.3 Accurate Closed-form Estimation of Local Affine Trans-
formations Consistent with the Epipolar Geometry

This section addresses the problem of precise estimation of local affine transforma-
tions in rigid 3D scenes'. Computer vision problems which exploit local features,
e.g. structure-from-motion, commonly rely on point-to-point correspondences. Us-
ing the full local affine transformation has only become more popular in the last
decade. Matas et al. [91] showed that local affine transformations facilitate two-view
matching. Koser and Koch [92] proved that the 3D camera pose estimation is possi-
ble if the corresponding affinity and location of a single patch are given. Koser [5]
showed that 3D points can be precisely triangulated from local affinities. Bento-
lila et al. [94] proved that affine transformations give constraints for estimating the
epipoles in the images. Current 3D reconstruction pipelines use point correspon-
dences as well as patches [9], [66], [93] in order to compute realistic 3D models of

'The generalization to multiple rigid motions each satisfying a different epipolar constraint is
straightforward.
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real-world objects. If the epipolar geometry is known, a homography can be es-
timated from a single local affinity [30]. Barath et al. [32] showed that there is a
one-to-one relationship between the surface normal and the local affinity.

The main goal of this section is to show how to optimally correct local affine transforma-
tions between two frames, in the least squares sense, if the fundamental matrix F is known.
The fundamental matrix can either be estimated from the local affine transforma-
tions [9], [94] to be refined or from point-to-point correspondences [43]. In calibrated
set-ups, F is available.

The refinement of the translation part has been solved by Hartley and Sturm [100]
who exploit the fact that point locations have to satisfy the epipolar geometry: if a
point is given in the first image, its correspondence in the second frame must lie on
its epipolar line [88]. The closest, in the least squares sense, locations are computed
as the roots of a polynomial of degree 6. The method proposed in this section can be
seen as an extension of the Hartley and Sturm method as we consider the full local
affinity and present two additional constraints induced by the epipolar geometry.

Local affine transformations are commonly provided by three types of affine-
covariant detectors. The first group, including MSER [45], estimates full local affine
transformations directly. The second group optimizes the initial estimates — both
Harris-Affine [3] and Hessian-Affine [101] perform the so-called Baumberg itera-
tion [102] in order to obtain high-quality affinities. Finally, some methods generate
synthesized views related by affine transformations and feature detectors are ap-
plied to these images. By combining the estimates of the detector with the transfor-
mation related to the current synthetic view, a local affinity is given for each point
correspondence. The most frequently used combined view synthesizer and feature
detector is the Affine SIFT (ASIFT) [2]. However, affine version of commonly used
detectors like SURF [96], ORB [103], BRISK [104], etc. can easily been constructed
using the synthesizer part of ASIFT. Matching On Demand with view Synthesis [46]
(MODS) is a recently proposed method that obtains a mixture of MSER, ORB and
Hessian-Affine points and does as little view-synthesizing as required to detect a
predefined number of point pairs.

The contributions of this section are: an algorithm to estimate an EG-L,-Optimal
(EG-L2-Opt) affine transformation in the least squares (LSQ) sense by enforcing the
constraints proposed in the previous section. It is also proven that the LSQ opti-
mization of the parameters has geometric and algebraic interpretations. We show
experimentally that the EG-L,-Opt procedure improves the accuracy of the output
of all affine-covariant feature detector. As a side-effect, we determine the accuracy
of affine-covariant feature detectors using ground truth data.

4.3.1 EG-L,-Optimal Local Affine Transformation

First, we discuss how to estimate an affine transformation at each corresponding
point pair. Finally, the computation of the EG-L-Opt transformation is discussed.

Local affine transformation. Itis an open question how to get a good quality affine
transformation related to each point pair in a real-world environment. We propose
to use affine-covariant feature detectors [101] which obtain both the point locations
and the affine transformations at the same time. Possibilities include ASIFT [2],
MODS [46], Harris-Affine [57], Hessian-Affine [57], etc. These feature detectors pro-
vide an affine transformation for every ith point pi = [z} yi]T (i € [1,7n]) in the kth
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image (k € 1,2) as A}. The transformation A’ mapping A{ into A}, is obtained as

Al = AL(ADHTL (4.7)

Affine compatibility — Translation. The last column of matrix A is responsible for
the translation between the related point pair. It is shown by Hartley and Sturm [100]
that it can be refined in an optimal way in the least squares sense. Their method
minimizes the Euclidean distance between the original and refined positions. Then
the resulting point locations are fully consistent with the epipolar geometry.

Affine compatibility — Orientation and Scale. The constraints regarding to the
orientation and scale are encoded in A~Tn; = —ny (Eq. 4.1) proposed in the previous
section.

The EG-L,-Opt affinity. Suppose that an observed affine transformation A’ is given.
Then let us denote that by

/ /
A= [aﬂ ‘“2} . (4.8)
3/21 0,22
The task is to find an A where
A —A'? (4.9)

is minimal and A~ Tn; = fny. In order to avoid inversion, it can be reformulated as
n; = BATn,. Note that the geometric interpretation of the Ly norm is discussed in
Appendix D. As it was proven in the previous section condition

n; — fATn, =0 (4.10)

holds for local affinities consistent with the epipolar geometry and it is linear in the
parameters of A. Note that 5 = —1.

N1z — Bnagair — Bnoyasr =0, nyy — Bngzaiz — Bngyaze = 0. (4.11)

Let us introduce a cost function J applying the constraints defined in Eqs. 4.9, 4.11.
Using Lagrange multipliers, the cost function is as follows:

2 2
1
J(A7 )\117 )\12) = 5 Z Z(CLU — a;j)Q +
=1 j=1
A (nie — Bnggain — Bnoyas) + Ma(ny — Bnzzars — Bngyazs), (4.12)

where \1; and Ay are the Lagrange multipliers. Eq. 4.9 yields non-negative values.
Therefore, the optimal solution is given by the partial derivatives of .J:

o.J oJ
Bars = a1 —ay; — Bnggr =0, D = a1z — ajy — Pnaahi2 =0,
o.J oJ
Daan = ag1 — Ay — fngyAin =0, D = ag — ahy — Pnayriz =0,

nigz — 5”2,xa11 - 5n2,ya21 =0, =MNly — an,malz - 5”2,ya22 =0.

o1 012

This is an inhomogeneous, linear system of equations which can be written in form
Cx = b, where x = [au a2 a1 a9 )\11 )\12]T, b = [a’ll a,'12 a’21 a’22 —
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Nz — nLy]T, and C are the vector of the unknown parameters, inhomogeneous
part, and coefficient matrix, respectively. C is as follows:

1 0 0 0 —fBng, O
0 1 0 0 0  —fBnos
c_| 0 0 1 0 —fng, O
0 0 0 1 0 —fBnay
—Bng. 0 —fBng, O 0 0
0 _577/2,:3 0 —any 0 0 |

The solution is x = C~'b. See Alg. 3 for the pseudo-code of the proposed algorithm.

Algorithm 3 EG-L,-Optimal Affine Transformation

1: procedure CORRECTAFFINETRANSFORMATION

2 Input:

3 F - fundamental matrix.

4 p1, P2 — corresponding point pair.

5: A’ — measured affine transformation.

6 Output:

7 A —optimally refined affine transformation.

8 Algorithm:

9: L :=FTpy; 1y = Fpy;ny o= [ 1]/|[05; 11125 2 := (185 15]/[[19: 18]
10: s1:= fun{ + fiand; s2 := fon{ + foond; s3 := fan{ + fzond;
8= (1 |sia + sy + s5l) /1313 + B

12: C :=eye(6,6); Cs5 := 0; Cg6 := 0;

13: Ci5 := —fnf; Cos := —fn3; Cgs5 := —fn; Cus := —fnf;
14: Cs1 := —fn3; Cea := —pn3; Cs3 := —fn; Cey 1= —fnf;
15 b= [ay;a)s;ahy;ahy; —nf; —nf];

16: x:=C~lp;

17: A = [z, 29; 23, 24);

4.3.2 Experimental Results

First, we show how to get ground truth affine transformations. Then we test the
proposed theory on both synthesized and real-world data.

Synthesized tests. For synthesized testing, two perspective cameras are generated
by their projection matrices p; and p2. Their positions are randomized in the plane
z = 60 which is parallel to plane XY". Both cameras point towards the origin. Their
common focal length and principal point are 600 and [300  300]?, respectively. Then
50 spatial points are generated on a random plane that passes through the origin, and
the points are projected onto the cameras. The ground truth affine transformation
related to each point is calculated using the plane parameters. Tests are repeated 500
times at every noise level.

Fig. 4.2 shows the mean (left) and median (right) distances of the original noisy
transformations and that of the optimal ones w.r.t. the ground truth data. Zero-
mean Gaussian noise is added to the elements of the affine transformations and point
locations. The error (vertical axis) is the mean of the Ls-norms of the difference
matrices of the obtained and ground truth data. The horizontal axis shows the ¢
value of the noise.
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FIGURE 4.2: Error of the original and optimal affine transformations w.r.t. the noise
level. The average Lo distance from the ground truth transformation is plotted as a
function of the o value of the Gaussian noise (in pixels). The noise is added to the
affine parameters and point locations. (Red curve) The ground truth F is used. (Black
curve) F is estimated using the noisy point correspondences by the normalized 8-point
algorithm followed by a Levenberg-Marquardt optimization minimizing the symmetric
epipolar error. In the median figure, the black and red curves coincide.

The red curve shows the error if the ground truth fundamental matrix is used.
For the black curve, the fundamental matrix is estimated using the noisy point loca-
tions by the normalized 8-point algorithm followed by Levenberg-Marquardt opti-
mization minimizing the symmetric epipolar error. The refined transformations are
closer to the ground truth matrices than the original ones. There is no significant
difference between the median and mean plots and between results obtained on the
ground truth and the estimated fundamental matrix.

The processing time of the proposed method is negligible since it consists of a
few operations. It is calculated in C++ in around 0.04 milliseconds per point on a 2.3
GHz PC.

Tests on Real Data. The proposed theory is tested on the annotated AdelaideRMF
dataset’ and on image pairs graffiti®, stairs and glasscasea (see Fig. 4.3). In the
last three pairs, we manually marked point correspondences and assigned them to
planes. The ground truth homographies are computed using the annotated point
correspondences.

Several affine-covariant feature detectors are run on all image pairs. The fol-
lowing affine-covariant detectors are applied: AAKAZE, ABRISK, AORB, ASIFT,
ASURF, AHessian-Affine*, MODS®, MSER, Harris-Affine and Hessian-Affine®.

Correspondences of features points obtained by matching [95] are assigned to
the closest annotated homography. The distance between a point pair and a homog-
raphy is defined as the re-projection error (Hp; ~ p2). If a correspondence is farther
from its closest homography than 1.0 px, it is discarded from the evaluation since
the ground truth affine transformation for such correspondence can not be calcu-
lated. For the remaining correspondences, ground truth affine transformations are

2Available at http://cs.adelaide.edu.au/~hwong/doku.php?id=data

3Available at http: //www.robots.ox.ac.uk/~vgg/research/affine/

4 ASIFT is downloaded from http://www.ipol.im/pub/art/2011/my-asift. The "A-forms"
of AKAZE, BRISK, ORB, SIFT, SURF, Hessian-Affine are obtained by replacing SIFT in the view-
synthesizer.

SMODS is downloaded from http://cmp.felk.cvut.cz/wbs

®MSER, Har-Aff, and Hes-Aff downloaded from http://www.robots.ox.ac.uk/~vgg/
research/
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TABLE 4.1: Errors of the affine-covariant feature detectors "Observed" and their "EG-

Ly-Opt" corrections. The error is the mean of the Ly-norms of the difference matri-

ces of the obtained and ground truth affine transformations. Test pairs: (a) hartley,

(b) johnsonnb, (c) neem, (d) sene, (e) oldclassicswing, (f) ladysymon (g) graffiti (h)
stairs (i) glasscasea

Detector @ ® © @ @ & (@ O @G [avg med
Aakagp Observed 0260 030 017 030 026 0.8 025 062 038030 026
EG-L,-Opt || 021 022 012 019 019 014 016 054 026 | 023 0.19
ABRISK | Observed [0287 033 027 038 028 030 028 131 031|042 030
EG-L,-Opt || 021 025 019 024 022 018 018 050 020 || 024 021
AHES App Observed [ 019 023 018 020 0.4 017 021 024 022020 020
EG-L,-Opt | 014 017 011 013 009 011 013 014 015 | 013 0.13
AORB Observed | 034 034 0.5 045 023 024 027 - 028 029 028
EG-L,-Opt || 027 028 010 029 017 018 018 - 020 | 020 0.19
ASIFT Observed | 027 028 027 026 021 022 027 023 029|026 027
EG-Ly-Opt || 020 021 015 017 014 017 016 017 018 || 017 0.17
ASURE Observed | 023 027 017 030 022 017 025 026 027 | 024 025
EG-L,-Opt | 018 020 011 021 016 012 017 018 019 || 0.18 0.18
HARAFE  Observed 024 025 015 024 016 027 020 038 028024 024
EG-L,-Opt | 0.18 018 0.09 019 012 019 013 035 017 | 0.16 0.18
HES.App  Observed 024 022 020 022 013 020 019 - 024021 021
EG-L,-Opt | 017 016 010 017 009 009 012 - 015|013 0.14
MODS Observed | 029 040 023 031 026 025 061 024 047 || 034 029
EG-L,-Opt || 020 025 013 022 019 017 042 019 032 | 023 020
MSER Observed || 042 0.69 046 034 029 031 042 051 034 | 042 042
EG-L,-Opt | 024 032 023 025 020 022 025 031 021 025 024

TABLE 4.2: The average number of inliers — correspondences lying on an annotated
homography - for different feature detectors. Processing times in seconds on an Intel
Core4Quad 2.33 GHz PC with 4 GByte memory using only a single core.”

AAKAZE ABRISK AHES-AFF AORB ASIFT ASURF HAR-AFF HES-AFF MODS MSER
Inliers 239 110 1420 145 2082 837 64 73 941 78
Time 81.91 81.38 89.30 86.39 81.34 84.00 4.10 322 5292 041

calculated using Eqgs. 4.7. Fundamental matrices are computed by the normalized
8-point algorithm followed by a numerical refinement stage minimizing symmetric
epipolar error by Levenberg-Marquardt optimization [85].

The errors are shown in Table 4.1. The error is the mean of the Lo-norms of the
difference matrices of the obtained and ground truth data. Each column represents
a test pair except the last two ones which show the mean and median errors. The
corresponding odd and even rows visualize the mean error of the observed affine
transformations given by each feature detector and that of the refined, EG-L,-Opt
ones. The error metric is the same as used for the synthesized tests. Every method
is applied using their default parameterization. The median values show the same
trend. The most important conclusion of these tests is that the refined, EG-Lo-Opt
affine transformations are always more accurate than the observed ones.

Hessian-Affine augmented with the view-synthesizer of ASIFT (denoted by AHES-
AFF) obtains the most accurate affinities (see Table 4.1) and provides many point
correspondences as well (see Table 4.2). If the required number of correspondences
needs not be high, Hessian-Affine without view-synthesizing might be the method
of choice since it is significantly faster and its accuracy is nearly the same.

"Information in Table 4.2 is not assessing the precision of affine transformation, the main topic of
the section. It complements Table 4.1 in providing broader characterization of detector performance.
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(g) graffiti (h) stairs (i) glasscasea

FIGURE 4.3: The first frames of the selected image pairs with a few local affinities each
represented by an ellipse.

4.3.3 Improvements on Homography and Surface Normal Estimates

This section presents experiments showing that EG-Ly-Opt affinities lead to more
accurate homography and surface normal estimates.

For homography estimation the same synthetic scene is constructed as for the pre-
vious synthesized tests: a random plane is generated and sampled at ten locations
which are projected onto the cameras. The method proposed by Koeser [5] is ap-
plied to one of the ten correspondences and the related affinity. Tests are repeated
500 times for every noise level. Fig 4.4(a) shows that homographies calculated from
the EG-L2-Opt refined data are the most accurate ones. The error metric is the mean
re-projection error (in pixels) computed for the point locations.

For surface normal estimation, the technique proposed recently by Barath et al.
[32] is performed. In our tests, the same testing environment is used as proposed
in [32] and FNE normal estimator is applied to both the initial and EG-L,-Opt affini-
ties. Fig. 4.4(b) confirms that the proposed technique makes the surface normals
more accurate.
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Mean re-projection error
Median re-projection error
Median angular Error

() (b)

FIGURE 4.4: Mean, (a) left, and median, (a) right, re-projection errors (in pixels) of the

homography estimation [5] applied to the noisy and the EG-L,-Opt refined affinities.

Mean, (b) left, and median, (b) right, angular errors (in degrees) of the surface normals

estimated from the initial and EG-L,-Opt refined affinities. The errors are plotted as the
function of the ¢ value of the isotropic 6D zero-mean Gaussian noise.

4.3.4 Summary

We showed how to improve the accuracy of a local affine transformation obtained
by an affine-covariant feature detector by considering the epipolar constraint. The
proposed algorithm is optimal in the least squares sense. Its computational cost
is negligible. The proposed least squares minimization has an intuitive geometric
interpretation.

The introduced EG-L,-Opt procedure is validated on real-world image pairs. It
improves the accuracy of all tested affine-covariant detectors. On average, the error
of the refined affinities is reduced to about 65%. The EG-L,-Opt affinities improve
the accuracy of surface normal and homography estimates as well.

As a side-effect, the experiments quantitatively compared the precision of affine-
covariant feature detectors. The Hessian-Affine detector combined with the view-
synthesizer of ASIFT obtains the most accurate affinities.

4.4 Essential Matrix Estimation

The estimation of epipolar geometry between a pair of images is a key-problem for
the recovery of relative camera motion and has been studied for decades. Luong and
Fougeras showed that this relationship can be described by the so-called 3 x 3 fun-
damental matrix [105]. Since then, several approaches have been proposed to cope
with this problem. The well-known seven and eight-point algorithms [43] need no a
priori information about the camera parameters to estimate the fundamental matrix
from point correspondences. However, exploiting the intrinsic camera parameters
(focal length, principal point, etc.), the estimation can be done using six [106]-[109]
or five correspondences [110]-[113].

In this section, we assume intrinsic parameters and two affine correspondences
to be known between a pair of images to recover the essential matrix. An affine
correspondence consists of a point pair and the related local affine transformation
mapping the infinitesimally close vicinity of the point in the first image to that of the
second one. Nowadays, several approaches are available for the estimation of local
affine transformations. Beside the well-known affine-covariant feature detectors [57]
such as MSER, Hessian-Affine, Harris-Affine, there are some modern ones based on
view-synthesizing, e.g. ASIFT [2], ASURF or MODS [46]. They obtain accurate local
affinities and many correspondences by transforming the original image with an
affine transformation to create a synthetic view. Then a feature detector is applied to
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the warped images. The final local affinity related to a point pair is estimated as the
combination of the transformation regarding to the current synthetic view and the
affine transformation which the applied detector obtains. MODS yields a mixture of
ORB [103], MSER [45] and Hessian-Affine points and does as few view-synthesizing
as necessary to obtain a predefined number of points.

Using local affinities for fundamental matrix estimation is not a novel idea. Per-
doch et al. [114] and Chum et al. [7] proposed methods using two and three affine
correspondences, respectively. Even so, they provide only rough estimations since
they generate point correspondences exploiting local affinities and apply the six [106]
and eight-point algorithms [43], respectively. Nevertheless, local affinities cannot
generate point correspondences since they are defined as the partial derivative of
the related homography. Thereby, they are valid only infinitesimally close to the ob-
served point [32]. The obtained results of [114] and [7] are approximations — the error
is not zero even for noise-free input. Bentolila et al. [8] showed that two affine trans-
formations yields three explicit conic constraints on fundamental matrix estimation
and three affine correspondences are enough. Recently, an approach is proposed by
Raposo and Barreto [9] which is slightly similar to the base algorithm proposed in
this section. Providing a derivation on the basis of homographies and applying the
solver of the five-point algorithm [111], they estimate the epipolar geometry using
two affine correspondences. Unlike them, we show that this relationship can be for-
malized directly, considering the way how a local affinity affects the epipolar lines.
Through the proposed formulation it can straightforwardly be seen that the relation-
ship holds for arbitrary camera models. Additionally, the solver we propose leads
to results superior to [9] as it is demonstrated later.

The contributions of this section are as follows: (1) Using the constraints pro-
posed previously, the essential matrix is estimable exploiting two affine correspon-
dences. The method is generalized to solve the over-determined case as well and
provides only one globally optimal essential matrix. It has been demonstrated both
on synthesized and real world test that the algorithm is superior to the state-of-the-
art in term of the accuracy of the estimated camera motion. (2) It is shown how the
multiplication of the point locations by the camera matrices modifies the local affini-
ties, thus making the method applicable to image pairs captured by different camera
set ups. The normalization technique of Hartley [47] is extended to affine transfor-
mations to achieve numerically stable estimates in the over-determined case.

44.1 Preliminaries

The ith element of the essential E and fundamental matrices F in row-major order
is denoted as e; and f;, respectively (i € [1,9]). The relationship of them is F =
K5 TEKl_l, where K; and K3 are the intrinsic parameters of the two cameras. Fun-
damental matrix F ensures the epipolar constraint as pyFp = psK, "EK; 'p; = 0.
In the rest of the section, we assume that points p; and p2 have been premultiplied
by K; and K3. This assumption simplifies the epipolar constraint to

i Eq; =0, (4.13)

where q; and qy are the points multiplied by K; and K,. Two additional con-
straints can be considered on the essential matrix E. The first one is called trace
constraint [43], it is as follows:

2EE'E — tr(EE")E = 0. (4.14)
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This matrix equation yields nine polynomial equations for the elements of E. The
second restriction ensures that the determinant of the essential matrix must be zero:

det(E) = 0. (4.15)

These two properties will help us to recover the essential and fundamental matrices
exploiting two affine correspondences.

4.4.2 Two-point Algorithm

First, we exploit the formulas, which the relationship of an affine transformation and
the epipolar geometry provides (Egs. 4.5, 4.6), to estimate the essential matrix using
two affine correspondences. Then we show the effect of differing intrinsic camera
parameters and that of the point normalization.

The Proposed Solver. Here, the proposed 2-point algorithm based on the intro-
duced constraints is discussed. Suppose that two point pairs (p1, p2) and (p], p))
and the related affinities A and A’ are given. Fig. 4.5 shows how A and A’ transform
the infinitesimally close vicinities of the points from the first to the second images.

P * ) P U
,,,:Ai R /
h\ l P
[ - [
C A, C

FIGURE 4.5: Projections of two spatial points are given on cameras K; and K. Cor-
responding local affine transformations A and A’ transforms the infinitesimally close
vicinities of point pairs (p1, p2) and (p], p5) between the image pair.

For the ith (i € {1, 2}) correspondence, the combination of formulas Egs. 4.5, 4.6,
and Eq. 4.13 can be written as C;x = 0, where x = [e] €2 €3 €4 €5 €6 €7 €3 eg)T is the
vector of the unknown elements of the essential matrix. Matrix C; is the coefficient
matrix consisting of three rows, where the first two are the coefficients of Egs. 4.5, 4.6.
The third one contains the coefficients related to the well-known formula pIEp = 0.
Note that the algorithm can straightforwardly be extended to n > 2 points by con-
catenating their C; matrices. If at least three correspondences are given, the solution
vector x is obtained as the eigenvector related to the smallest eigenvalue of matrix
CTC, where matrix C is the concatenated coefficient matrix and of size 3n x 9.

Considering the two point case, matrix Cj is of size 6 x 9 as C = [C] CE]T ts
null space is 3-dimensional, therefore, the solution of the equation system is given
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by the linear combination of the three corresponding singular vectors of K as
x = ad + fe +f, (4.16)

where d, e, and f are the singular vectors. Parameters ¢, 3, and y are unknown non-
zero scalar values. These scalars are defined up to a common scale, therefore, one of
them can be chosen to an arbitrary value. In the proposed algorithm, v = 1.

By substituting this formula to the trace (Eq. 4.14) and determinant (Eq. 4.15)
constraints, ten polynomial equations are given. They can be formed as Qy = b,
where Q and b are the coefficient matrix and the inhomogeneous part (coefficients
of monomial 1), respectively. Vectory = [@® % o?8 af? o* 2 af o f]
consists of the monomials of the system. Q is of size 10 x 9, therefore, the system is
solvable and overdetermined since ten equations are given for nine unknowns. Its
optimal solution in least squares sense is given by y = Q'b, where matrix Q' is the
Moore-Penrose pseudo-inverse of matrix Q. Since the solution vector y consists of
different powers of o and /3, the one is chosen for each, for which the obtained (from
Eq. 4.16) essential matrix minimizes Eqs. 4.5, 4.6. The fundamental matrix is finally
calculated as F = K, "EK; .

Transformation of Local Affinities by the Camera Matrices. The aim of this sec-
tion is to show how the multiplication of the point coordinates by the intrinsic pa-
rameters modifies the corresponding local affinities. Unlike to the rest of the section,
we assume here that points p; and ps are not multiplied by K| ! and K *. The orig-
inal relationship between the affine parameters comes from Eq. 4.1 by replacing the
normals by FTp, and Fp; as follows:

(A"TFpy)(19) = —(FDP) 1.2 (4.17)

where A is of size 3 x 3 as follows:

A A 0
a-[5 ]
Because of F = K, TEK !, Eq. 4.17 is modified as
(AfTK*TETKg_lm)(l:z) = _(K2_TEK1_1P)(1:2)-

Let us denote K5 1ps and Kl_lpl with g2 and q;, respectively. After elementary
modifications, it can be written as

(BTa2)(1:2) = —~(KTATK; "Eq1) (1.9

Therefore, due to the transformation of the intrinsic parameters, the original local
affinity A must be modified as

A = (K;'AKy)(12,12)- (4.18)

However, matrix A remains the same if K; = K5 and the shear is zero for both
cameras.
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Normalization of Affine Parameters. It is well-known that numerical instability
makes the normalization of the input data essential [47]. It is shown how to cal-
culate the normalized affine transformation A in this section if the overdetermined
case is considered. Let us denote the normalizing transformations in the two images
with Ty and T2 which translate the point sets into the origin and their mean dis-
tance from that toy/2. The normalization of the point coordinates (which have been
premultiplied by the intrinsic parameters) is trivial as p = T1p; and p’ = T2p2 [43].
The normalized essential matrix can be calculated from the original as follows: E=
T, "ET . After point normalization the relationship of the essential matrix and the
affine transformation (Eq. 4.2.2) is modified as follows:

(AfT(TEETl)sz)(Lz) = —(TEETlp)(m),

where A is the same 3 x 3 matrix as in the previous section. After elementary modi-
fications, it can be written as

(ETTZPQ)(I:Q) = —(TITATTEETlp)(m)'

Thus B R
AT = (T7TATTY) (12,19

The normalized affine transformation A is calculated as
A= (T2AT1_1)(1:2,1:2)-

This equation is the same as Eq. 4.18 and holds for all transformations that can be
written by 3 x 3 matrices e.g. the camera intrinsic parameters and the normalizing
transformations in the image space.

The affinities used during the estimation are normalized by both the normaliz-
ing transformations and the intrinsic parameters. Thus affine transformation A is
modified as follows: )

A = (ToK;'AKT ) (1:2,1.9)

Note that the proposed normalization is possible only if more than two correspon-
dences are given. Otherwise, only the normalization by the intrinsic parameters is
required.

4.4.3 Experimental Results

Validation on Synthesized Tests. In order to test the proposed method in a fully
controlled synthetic environment, two perspective cameras are generated by their
projection matrices p; and p2. Their common intrinsic parameters are focal lengths

fx = fy = 600 and principal point po = [300 300] ' For the tests, three types
of camera motions are considered: forward, sideways and random motions. The
lengths of these motions are 2 and the distances of the plane origins from the camera
centers are 10 along axis z and around 0.1 along axes x and y. We do not check
whether a point is visible on both cameras or not since it does not affect the results
of the methods. Having more than one plane is required to get a non-degenerate set
up, thus points are sampled on 100 different random planes and projected onto the
cameras. Zero-mean Gaussian-noise is added to the point locations. Homography
is calculated using the plane parameters [43]. The affine transformation related to
each point pair is calculated exploiting the noisy coordinates and the ground truth
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homography. The obtained essential matrices are decomposed into translation and
rotation components [43] and compared to the ground truth motion.

In Fig. 4.6, we compare four methods: the proposed algorithm applied to two
correspondences (Proposed), the normalized version of the proposed method ap-
plied to five point pairs (Normalized Prop.), the five-point algorithm [111] (Nistér)
and the technique proposed in [9] (Raposo et al.). The top row shows the mean error
(vertical axis) of the obtained rotation matrices plotted as the function of the noise
o (horizontal axis). The error is computed as the Frobenious-norm of the difference
matrix between the ground truth and estimated rotation matrices. The bottom row
reports the quality of the estimated translation vectors. The mean angular error (in
radians, vertical axis) w.r.t. the ground truth translation is plotted as the function of
the noise o (horizontal axis).

For Fig. 4.6(a), forward motion and no rotation is applied to the cameras. It can
be seen that the proposed method exploiting two correspondences outperforms both
the five-point algorithm and that of Raposo et al. The translation vector obtained by
the normalized algorithm is sensitive to this kind of motion, however, the estimated
rotation matrix is the most accurate. Fig. 4.6(b) reports the error if only sideways
motion is considered. In these tests, the proposed method and that of Raposo et
al. achieved similar accuracy. The normalized version is superior to all competitor
methods in both terms. For Fig. 4.6(c) random motion is applied, the rotation ob-
tained by the proposed two-point algorithm outperforms both the methods of [111]
and [9], while achieving similar results to [9] for the translation vector. The normal-
ized algorithm provided the most accurate results in both aspects. Fig. 4.6(d) reports
the results for nearly planar scenes. Only a small Gaussian-noise with 10~° standard
deviation is added to the plane tangents having the same base point. It can be seen
that the 5-point algorithm leads to the most accurate translation vectors, however,
the proposed methods outperform the competitor ones for estimating the camera
rotation.

Concluding the synthesized tests, the proposed algorithm (without normaliza-
tion) outperformed the competitor ones in four out of the eight test cases and achieve
similar results in the remaining ones. The normalized version applied to five corre-
spondences is superior to all methods in both terms except two test cases.

Real World Experiments. To validate the 2-point method on real world photos,
the Daisy dataset [115] is exploited. The contained images are of resolutions 512 x
384 up to 1024 x 768 with known intrinsic camera matrices. To acquire local affine
transformations and point correspondences, an affine-covariant feature detector is
applied to each image pair. There are several possible options such as ASIFT [2],
ASUREFE, AORB, MODS [46], Harris-Affine, Hessian-Affine, MSER [57]. According to
our experience [28] the most accurate one is Hessian-Affine detector combined with
the view-synthesizer of ASIFT. We call it AHessian-Affine.

For the determination of the essential matrix, PROSAC? [116] is selected as robust
estimator since it is as accurate as the widely-used RANSAC but significantly faster.
The applied distance function is the Sampson-error and the threshold of PROSAC
is € = 3.0 (in pixels). PROSAC selects two affine correspondences in each iteration
(minimal subset) and creates a hypothesis by the proposed technique.

Fig. 4.7 shows example results. The two points which are scored the best for
hypothesis creation by PROSAC are painted by red circles in each image pair. The
epipolar lines related to 50 random inliers are drawn by colors.

8 Available at https://github.com/erfannoury/sac
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(c) Random motion

(d) Nearly planar scene

FIGURE 4.6: Plots (a)—(d) represent camera motions: (a) pure forward, and (b) sideways
motion, (c) random motion, and (d) nearly planar scene with cameras having random
motion. The top row in each plot pair is the error (vertical axis) of the rotation matrix,
i.e. the Frobenious-norm of the difference matrix of the ground truth rotation and the
obtained one. The bottom row is the angular error (in radians, vertical axis) of the esti-
mated translations. The horizontal axis reports the noise (in pixels) added to the coordi-
nates and the affine parameters. Errors are computed as the mean of 1000 runs on each
noise level. The reported algorithms: the proposed one applied to a minimal sample
(Proposed), the normalized version of the proposed method applied to five correspon-
dences (Normalized Prop.), the technique of Raposo and Barreto [9], and the 5-point
algorithm proposed by David Nister [111].
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FIGURE 4.7: The results of the 2-point algorithm on real image pairs (columns). Red
circles visualize the two points scored the best by PROSAC. Epipolar lines of 50 random

inliers are drawn to the images using colors.

TABLE 4.3: Comparison of methods w.r.t. iteration number and processing time of
PROSAC [116]. The name of each test pair and the correspondence number N are
written in the first two columns. Other columns are the mean iteration numbers and
processing times (in seconds) of 500 runs on Daisy dataset. Competitor algorithms are:
3-point [8], 5-point [111], 6-point [109], normalized 7-point [43], and 8-point [43] algo-
rithms. Each method is included into PROSAC with threshold ¢ = 3.0 pixels.

N 2-pt 3-pt 5-pt 6-pt 7-pt 8-pt
Daisy1 | 1614 || 1510.03 891 292 3210.06 121005 4910.06 281 0.03
Daisy2 | 2223 || 491010 1241 400 431009 281013 1131017 77 10.12
Daisy 3 848 || 971 0.08 3481 9.63 7810.07 851016 45310.27 3761024
Daisy 4 569 || 50 10.03 2311 742 591004 5710.08 20910.09 188 10.09
Daisy 5 | 1072 || 44 10.05 1871 8.09 1381014 741017 9610.07 7910.07
Daisy 6 | 4101 || 90 | 0.26 606 | 16.13 1751051 129 10.98 437 1132 609 | 1.81
avg 58 10.09 2641 803 831015 641026 2261033 2261039
med 50 1007 2091 776 6910.08 661014 161 10.13 1341 0.10

Table 4.3 reports the mean iteration numbers of PROSAC. Each row is a test pair.
Columns are the results of different methods implemented in C++. The following
methods are applied: the proposed 2-point algorithm, 3-point’ [8], 5-point'? [111],
6-point'! [109], 7-point [43], 8-point'? [47] techniques. It is reported that PROSAC
makes the fewest iterations using the 2-point method except two cases. Its mean and
median iteration number and processing time are the lowest. It can be seen that the 3-
point method included into PROSAC is extremely slow compared with the others.
The reason is that it is solved as a high-degree polynomial which is unstable. Even
so, this test is slightly unfair since all algorithms but 2-point and 3-point methods
exploit only the point locations which can be obtained faster than affine-covariant
detectors providing their results.

’Own implementation is used.

0 Available at http://nghiaho.com/?p=1675
Uphttp://users.cecs.anu.edu.au/~hartley/Software/5pt-6pt-Li-Hartley.zip

2Normalized 7-point and 8-point methods are implemented in OpenCV.
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Processing Time. The proposed algorithm consists of two main steps. First, the
null space of a 6 x 9 matrix is calculated. Then the final solution is given as the
pseudo-inverse of a matrix of size 10 x 9. Both steps have negligible time demand,
therefore, the proposed algorithm is applicable even to online tasks. The general-
ization to n correspondences modifies only the first matrix to size 3n x 9 (n > 2).
The mean processing time of 1000 runs of the 2-point version implemented in C++
is approx. 53 x 107° seconds. The time demand of the n-point version is around
49 x 1073 seconds for n = 4000.

Augmenting a robust estimator, e.g. RANSAC [1], with the 2-point algorithm is
beneficial since it yields significantly faster convergence. See Table 2.1 reporting the
theoretical iteration number of RANSAC combined with different minimal methods.
It is clear that the estimation exploiting two correspondences is advantageous to
achieve real time performance even for high outlier ratio.

44.4 Application: Multi-motion Fitting

The clustering of correspondences to multiple rigid motions in two-views is usually
solved by applying a multi-model fitting algorithm, e.g. PEARL [13] or Multi-X [22],
combined with a minimal method as an engine estimating fundamental matrices.
Recent approaches are based on a RANSAC-like initialization, therefore, their re-
sults highly depend on the applied minimal method, especially, on the size of the
minimal sample — the probability of finding an accurate model increases if the model
is estimable using less correspondences.

FIGURE 4.8: Example two-view multi-motion fitting on pairs Gamebiscuit and Cube-
breadtoychips from the AdelaideRMF dataset. Color denotes motions.

Table 4.4 reports the results of Multi-X method fitting multiple rigid motions, i.e.
fundamental matrices, simultaneously. Each row contains the results of a minimal
method: the seven- (7PT) and eight-point (8PT) algorithms and the proposed one
(2PT). The errors are the misclassification errors (ME), i.e. the ratio of misclassified



4.4. Essential Matrix Estimation 61

correspondences:
_ #Misclassified Points

#Points ’

reported in percentage. Columns are the test pairs of the AdelaideRMF dataset'”
which consists of 18 image pairs of size 640 x 480 each containing point correspon-
dences assigned to rigid motions manually. Since the proposed method requires
affine correspondences, we applied AHessian-Affine to the image pairs detecting as
many correspondences as we can. For all annotated correspondences, i.e. the point
pairs provided in the dataset, we searched the closest match in the detected cor-
respondence set, and replaced them with the matched ones. Note that this could
introduce error into the annotation, however, these point pairs are used for all tests,
including the proposed and competitor methods, thus the comparison remains fair.
According to Table 4.4, it is clear that Multi-X leads to the most accurate clustering
if it is combined with the two-point algorithm.

ME

TABLE 4.4: Two-view multi-motion fitting on the AdelaideRMF dataset using Multi-X
method augmented with different minimal methods (rows): the proposed two-point
algorithm (2PT), the seven-point (7PT) and eight-point (8PT) methods. The reported
errors are misclassification errors in percentage, i.e. the ratio of the misclassified corre-
spondences. Test pairs: (1) biscuitbookbox, (2) breadcartoychips, (3) breadcubechips, (4)
breadtoycar, (5) carchipscube, (6) cubebreadtoychips, (7) dinobooks, (8) toycubecar, (9)
biscuit, (10) boardgame, (11) book, (12) breadcube, (13) breadtoy, (14) cube, (15) cubetoy,
(16) game, (17) gamebiscuit, (18) cubechips.

Mm@ 6 @ 6 6 @ @ © 0 4y 12 13 a4 15 @16 (17) (18) | avg med
2PT |50 51 22 72 61 49 72 55 294 82 27 52 115 278 37 73 37 70|83 58
7PT |39 55 17 78 61 43 114 60 303 86 27 25 118 298 52 77 30 81 |87 61
8PT |46 84 22 72 73 61 106 65 321 86 27 33 83 285 48 86 27 9290 73

4.4.5 Summary

Exploiting the two linear constraint which a local affine transformation provides, the
essential matrix can efficiently be recovered using two affine correspondences. Even
though the proposed solution assumes perspective camera model, it can straightfor-
wardly be generalized to arbitrary one, e.g. omni-directional cameras.

It has been validated both on synthesized and real world data that the pro-
posed 2-point algorithm works accurately and fast. Its processing time is far smaller
than that of affine-covariant detectors. However, using GPU implementation of
ASIFT [117] or that of other affine-covariant detectors could make the estimation
real time. Applying the method to minimal samples led to camera motions supe-
rior to the state-of-the-art in half of the cases and was not worse in the remaining
ones. Considering a non-minimal sample, e.g. consisting of five correspondences,
for the robust estimation, the results were more accurate in all except two test cases.
Augmenting a robust estimator, e.g. RANSAC, with it is beneficial and leads to sig-
nificantly faster convergence. Moreover, it makes two-view multi-motion estimation
more accurate as well.

Bhttps://cs.adelaide.edu.au/~hwong/doku.php?id=data
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4.5 A Minimal Solution for Two-view Focal-length Estima-
tion using Two Affine Correspondences

The recovery of camera parameters and scene structure have been studied for over
two decades since several applications, such as 3D vision from multiple views [88],
are heavily dependent on the quality of the camera calibration. In particular, two ma-
jor calibration types can be considered: aiming at the determination of the intrinsic
and/or extrinsic parameters. The former ones include focal lengths, principal point,
aspect ratio, and non-perspective distortion parameters, while the extrinsic param-
eters are the relative pose. Assuming two cameras with unknown extrinsic and a
priori intrinsic parameters except a common focal length is called the semi-calibrated
case [107]. It leads to the unknown focal-length problem: estimation of the relative mo-
tion and common focal length, simultaneously. The semi-calibrated case is realistic
since (1) the aspect ratio is determined by the shape of the pixels on the sensors, it
is usually 1:1; (2) the principal point is close to the center of the image, thus it is a
reasonable approximation and (3) the distortion can be omitted if narrow field-of-
view lenses are applied. Considering solely the locations of point pairs makes the
problem solvable using at least six point pairs [106], [107], [118]. The objective of this
paper is to solve the problem exploiting only two local affine transformations.

In general, 3D vision approaches [88] including state-of-the-art structure-from-
motion pipelines [93], [119]-[121] apply a robust estimator, e.g. RANSAC [1], aug-
mented with a minimal method, such as the five [111] or six-point [107] algorithm as
an engine. Selecting a method exploiting as few point pairs as possible gains accu-
racy and drastically reduces the processing time. Benefiting from estimators which
use less input data, the understanding of low-textured environment becomes sig-
nificantly easier [9]. Moreover, minimal methods are advantageous from theoretical
point-of-view leading to deeper understanding.

Local affine transformations represent the warp between the infinitely close vicini-
ties of corresponding point pairs [5] and have been investigated for a decade. Their
application field includes homography [32] and surface normal [5], [34] estimation;
recovery of the epipoles [94]; triangulation of points in 3D [5]; camera pose esti-
mation [92]; structure-from-motion [9]. In practice, local affinities can be accurately
retrieved [28], [57] using e.g. affine-covariant feature detectors, such Affine-SIFT [2]
and Hessian-Affine [3]. To the best of our knowledge, no paper has dealt with the
unknown focal length problem using local affine transformations.

Forming a multivariate polynomial system and solving it by the hidden-variable
technique [122], the proposed method is efficient and estimates the focal length and
the relative motion using only two affinities. In order to eliminate invalid roots, a
novel condition is introduced investigating the geometry of local affinities. To select
the best candidate out of the remaining ones, we propose a root selection technique
which is as accurate as the state-of-the-art for small noise and outperforms it for
high-level noise.

4.5.1 Preliminaries

Semi-calibrated case is assumed in this paper as only the common focal-length f is
considered to be unknown. Without loss of generality, the intrinsic camera matrix is
K=KT= diag(f, f, 1), where f is the unknown focal-length. In order to replace E
with F in Eq. 4.14 we define matrix Q as follows:

Q =diag(1,1,7), 7=f2% (4.19)
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Due to the fact that K is non-singular, and trace(EET) identifies a scalar value,
Eq. 4.14 can be simplified by multiplying with K~ T and K~! from the left and the
right sides, respectively. Moreover, trace is invariant under cyclic permutations. As
a consequence, Eq. 4.14 is written as [123], [124]

JFQFIQF — tr(FQFTQ)F = 0. (4.20)

This relationship will help us to recover the focal length and the fundamental matrix
using two affine correspondences.

We use the hidden variable technique in the proposed method. It is a resultant
technique in algebraic geometry for the elimination of variables from a multivariate
polynomial system [122]. Suppose that m polynomial equations in n variables are
given. In brief, one can assume an unknown variable as a parameter and rewrite
the equation system as C(y;)x = 0, where C is a coefficient matrix depending on the
unknown g; (hidden variable) and vector x is the vector of n — 1 unknowns. If the
number of equations equals to that of the unknown monomials in x, i.e. matrix C
is square, the non-trivial solution can be carried out as det(C(y;)) = 0. Solving the
resultant equation for y; and back-substituting it, the whole system is solved.

4.5.2 Focal-length using Two Correspondences
This section aims the recovery of the unknown focal length and fundamental matrix

using two affine correspondences.

Two-point Solver. Suppose that two affine correspondences (pi, p3, A!) and (p?,
p3, A?) are given. Coefficient matrix

' T2 + a1 a11y1 a1l Y2 + a1 a21Y1 az1 1 0 O
C' = a1221 T2+ ai2y1 a1 2271 Y2 +aoyr ax 0 1 0
T122 Y122 T2 T1Y2 Y1Yy2 y2o 1 oy 1

related to the ith (i € {1, 2}) correspondence is formed as the combination of Egs. 4.13,
4.5, 4.6 and satisfies formula Cix = 0, where x = [f1 fo f3 f1 f5 fo [z

fs fg]T is the vector of unknown elements of the fundamental matrix. We denote
the concatenated coefficient matrix of both correspondences as follows:

C= {g;} . 4.21)

It is of size 6 x 9, therefore, its left null space is three-dimensional. The solution is
carried out as
x = aa + b + vc, (4.22)

where a, b and c are the singular vectors and «, 3, 7 are unknown non-zero scalar
values.

Remember that only the common focal length is unknown from the intrinsic pa-
rameters, therefore, we are able to exploit the trace constraint. Eq. 4.20 yields ten
cubic equations for four unknowns «, 3, v and 7, where 7 = f -2 encapsulates the
unknown focal length. We consider 7 as the hidden variable and form coefficient ma-
trix C(7) w.r.t. the other three ones — thus the rows of C(7) are univariate polynomi-
als with variable 7. Even though «, 3 and + are defined up to a common scale, we do
not fix this scale in order to keep the homogeneity of the system. The monomials of
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this polynomial system are as y = [a® 2?8 a?y aB? aBy ay? B2 B2y By? 9N
Table 4.5 demonstrates the coefficient matrix.

Since the scale of monomial vector x has not been fixed, the non-trivial solution
of equation C(7)y = 0 is when the determinant vanishes as

det(C(7)) = 0. (4.23)

Therefore, the hidden-variable resultant — a polynomial of the hidden variable — is
det(C(7)). As the current problem is fairly similar to that of [107], we adopt the
proposed algorithm. It is proved that det(C(7)) is actually a 15th degree polynomial
and it obtains the candidate values for 7. Then the solution for «, 3, v and 7 is given
as y = null(C(7)). Finally, fundamental matrix F regarding to each obtained focal
length can be directly estimated using Eq. 4.22.

TABLE 4.5: The coefficient matrix C(7) related to the ten polynomial equations of the
trace constraint.

cm 1 2 3 4 5 6 7 8 9 10
0 28 o’y af? aBy a? BB By B AP

1 C1 C2 C3 Cy Cs Ce Cc7 C8 Cg C10

10 | co1 co2  co3 c9a C95  Co6 Cor  Cogs  Co9  Cl00

4.5.3 Elimination and Selection of Roots

In this section, a novel technique is proposed to omit roots on the basis of the un-
derlying geometry. Then we show a heuristics considering the properties of digital
cameras to remove invalid focal lengths. In the end, we introduce a root selection
algorithm.

Elimination of Invalid Focal Lengths. A solution is proposed here based on the
underlying geometry to eliminate invalid focal lengths. Suppose that a point pair
(p1,p2), the related local affinity A, the fundamental matrix F, and an obtained
focal length f are given. As the semi-calibrated case is assumed, F and f exactly
determines the projection matrices p; and ps of both cameras [88]. Denote the 3D
coordinates and the surface normal induced by point pair (p1, p2), local affinity A
and the projection matrices withq = [z y 2/Tandn = [n, n, n.]?, respec-
tively. According to our experiences, linear triangulation [88] is a suitable and effi-
cient choice to estimate q. Surface normal n is estimated exploiting affinity A by the
method proposed in [34].1

Without loss of generality, we assume that a point of a 3D surface cannot be
observed from behind. As a consequence, the angle between vectors ¢; — q and n
must be smaller than 90° for both cameras, where c; is the position of the ith camera
(¢ € {1,2}). This can be interpreted as follows: each camera selects a half unit-
sphere around the observed point q. Surface normal n must lie in the intersection
of these half spheres. These half spheres are described by a rectangle in the spher-
ical coordinate system as follows: rect; = [Oi -5 oi—3 7 g], where 6;, o; are
the corresponding spherical coordinates and rect; is of format [corner, corner,

14http://web.eee.Sztaki.hu/~dbarath/
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width height]. The intersection area induced by the two cameras is as

rectn = ﬂ rect;.
1€[1,2]

Point q is observable from both cameras if and only if surface normal n, repre-
sented by spherical coordinates © and %, lies in the intersection area: [© Y] € rectn.
A setup, induced by focal length f, not satisfying this criteria is an invalid one and
can be omitted. Note that this constraint can be straightforwardly extended to the
multi-view case making the intersection area more restrictive.

Physical Properties of Cameras. We introduce restrictions on the estimated roots
considering the physical limits of the cameras. The focal length within camera ma-
trix K is not equivalent to the focal length of the lenses, since it is the ratio of the
optical focal length and the pixel size [88]. Particularly, the latter one is a few mi-
crometers, while the optical focal length are within interval [1...500] mm. There-
fore, coarse lower and upper limits for a realistic camera are 100 and 500.000. Focal
lengths out of this interval are automatically discarded. Note that these limits can be
easily changed considering cameras with different properties.

Root Selection. To resolve the ambiguity of multiple roots and to minimize the
effect of the noise, the classical way is to exploit multiple measurements eliminat-
ing the inconsistent ones. Since Eq. 4.23 is a high-degree polynomial it is sensitive
to noise — small changes in the coordinates and affine elements cause significantly
different coefficients.

RANSAC [1] is a successful technique for that problem, e.g. in the five-point
relative-orientation one [111]. Recent methods, i.e. Kernel Voting, exploit the prop-
erty that the roots form a peak around the real solution [107], [125], [126]. Kernel
Voting maximizes a kernel density function like a maximum-likelihood-decision-
maker. To our experiences, this technique works accurately if the noise in the co-
ordinates does not exceed 1 — 2 pixels on average. Over that, the roots may form
several strongly supported peaks and it is not guaranteed that the true solution is
found.

Thus we formulate the problem as a mode-seeking in a one dimensional domain:
the real focal length appears as the most supported mode. Among several mode-
seeking techniques [127] the most robust one is the Median-Shift [128] according to
extensive experimentation. Median-Shift providing Tukey-medians [129] as modes
does not generate new elements in the domain it is applied to. In particular, there is
no significant difference in the results of Tukey- [129] and Weiszfeld-medians [130],
however, the former one is slightly faster to compute. Finally, in order to overcome
the discrete nature of Median-Shift — since it does not add new instances, only oper-
ates with the given ones —, we apply a gradient descent from the retrieved mode =z
maximizing function

k(z; — )
= _ 4.24
where n is the number of focal lengths, « is a kernel function — we chose Gaussian-
kernel —, z; is the ith focal length, and % is a bandwidth same as for the Median-Shift.
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4.54 Experimental Results

Synthesized tests. For synthesized testing, two perspective cameras are generated
by their projection matrices p; and p2. The first camera is at position [0 0 1]T
looking towards the origin, and the distance of the second one from the first is 0.15
far in a random direction. One hundred random planes passing over the origin
are generated and each is sampled in a random location. The obtained 3D points
are projected onto the cameras. Zero-mean Gaussian-noise is added to the point
coordinates. The local affine transformations are calculated from the homographies
induced by the tangent planes at the noisy point correspondences similarly to [32].

The competitor methods are: the six-point algorithm of Hongdong Li [107] and
Hartley et al. [109]; the method of Perdoch et al. [6] approximating the affine cor-
respondences by affine frames combined with both six-point algorithms. The im-
plementations of these methods are available at http://cmp.felk.cvut.cz/
mini/.

Figure 4.9 reports the kernel density function with Gaussian-kernel width 10
plotted as the function of the relative error (in percentage). Candidate focal lengths
are estimated as follows:

1. Select two affine correspondences.
2. Apply the proposed 2-point method.
3. Repeat from Step 1.

The iteration limit is chosen to 100. The blue horizontal line reports the result of
Median-Shift, the green one is that of Kernel Voting. The o value of the zero-mean
Gaussian-noise added to the point locations and affinities is (a) 0.01 pixels, (b) 0.1
pixels, (c) 1.0 pixels, (d) 3.0 pixels, (e) 3.0 pixels and there are 10% outliers, (f) 1.0
pixels with some errors in the aspect ratio: the true one is 1.00 but 0.95 is used. The
real focal length is 600.

Confirming the validity of the proposed theory, the peak is over the ground truth
focal length: 0% relative error. The proposed root selection is more robust than the
Kernel Voting approach since the blue line is closer to the zero relative error even if
the noise is high.

Fig. 4.10 reports the mean (top) and median (bottom) errors of the estimated
fundamental matrices plotted as the function of the noise ¢ and compared with the
results of Hartley et al.[109] and Perdoch et al.[131]. The error is the Frobenious norm
of the estimated and ground truth fundamental matrices. 100 runs were performed
on each noise level. It can be seen that the accuracy of the estimated fundamental
matrices is similar to that of Hartley et al. [109].

Tests on Real Images. To test the proposed method on real world photos, 104
image pairs were downloaded!” each containing the ground truth focal length in
the EXIF data (see Fig. 4.12 for examples). Affine correspondences are detected by
ASIFT [2] and the same procedure is applied as for the synthesized tests. Fig. 4.11(a)
reports the histogram of the relative errors (in percentage) in the focal length es-
timates on all the 104 pairs. It can be seen that in most of the cases the obtained
results are accurate, the relative error is close to zero. Fig. 4.11(b) shows the first
image of an example pair and the point correspondences.

Bhttp://www2c.airnet.ne. jp/kawa/photo/ste-idxe.htm
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FIGURE 4.9: The kernel density function (vertical axis) with Gaussian-kernel width 10
plotted as the function of the relative error (%). Five planes are generated and each is
sampled in 20 locations — points are projected onto the cameras and local affinities are
calculated. The blue horizontal line is the result of Median-Shift, the green one is that
of the Kernel Voting. The ¢ value of the zero-mean Gaussian-noise added to the point
locations and affinities is (a) 0.01 pixels, (b) 0.1 pixels, (c) 1.0 pixels, (d) 3.0 pixels, (e) 3.0
pixels and there are 10% outliers, (f) 1.0 pixels with some errors in the aspect ratio: the
true one is 1.00 but 0.95 is used. Ground truth focal length is 600. Best viewed in color.
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FIGURE 4.10: The mean (top) and median (bottom) Frobenious norms of the estimated
and the ground truth fundamental matrices plotted as the function of the noise o. 100
runs on each noise level were performed.
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FIGURE 4.11: (a) Histogram of focal length estimation on 104 image pairs. The horizon-

tal axis is the number of the pairs plotted as the function of the relative error (%, vertical

axis) in the focal length. (b) The first image of an example pair. Point coordinates on

the first image (green dots), on the second one (red dots) and the point movements (red
lines).
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FIGURE 4.12: The first images of example pairs. Point coordinates on the first image

(green dots), on the second one (red dots) and the point movements (red lines). The

ground truth focal lengths, the results of the 6-point [109] and the proposed methods
are written in gray rectangles.
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4.5.5 Summary

A theory and an efficient method is proposed to estimate the unknown focal-length
and the fundamental matrix using only two affine correspondences. The 2-point
method is validated on both synthesized and real world data. Compared with the
state-of-the-art methods, it obtained the most accurate focal lengths with fundamen-
tal matrices having similar quality as the recent algorithms. Combining the minimal
solver with a robust statistics, e.g. RANSAC, allows significant reduction in compu-
tation. Particularly, its time demand is around a few milliseconds, thus it is much
faster than affine-covariant detectors providing the input.

The proposed algorithm can also be applied in reconstruction or multi-view
pipelines, e.g. that of Bujnak et al. [132], if at least two images of the same camera
with fixed focal length are available.
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Chapter 5

Robust Multi-Model Fitting

5.1 Introduction

In this chapter, we focus on robust model fitting, its theory and applications. Robust
model fitting, even when we talk about single- or multi-model fitting, is a major
component in most of the computer vision approaches, e.g. to calibrate cameras, for
matching and retrieval, structure-from-motion, wide-baseline matching and, proba-
bly, for all tasks exploiting measured input data.

The structure of the chapter is as follows: (i) first, we propose a technique to re-
ject outliers, i.e. incorrect point matches, from a set of point correspondences. The
method assumes no a priori model in general, thus it is applicable even when stan-
dard approaches are not, e.g. to non-rigid scenes. (ii) The second technique we pro-
pose, called Graph-Cut RANSAC, combines RANSAC [1] with a local optimization
step exploiting the spatial coherence of the input data to achieve state-of-the-art re-
sults. Benefiting from the new local optimization step, GC-RANSAC is superior to
LO-RANSAC and its recent variants in term of geometric accuracy, and does not pay
for this superiority with noticeable deterioration in processing time. (iii) We propose
a multi-homography fitting algorithm, Multi-H, combining point-wise homography
estimation and an energy-minimization-based relaxation. Multi-H significantly out-
performs general model fitting approaches both in terms of accuracy and speed on
publicly available datasets. Moreover, we propose a new dataset more challenging
than the available ones to evaluate multi-homography fitting algorithms. (iv) In the
end, we formalize multi-class multi-model fitting which has not been done before
to our knowledge. Using this formulation we propose a method, called Multi-X,
superior to the state-of-the-art, and techniques to set most of the parameters auto-
matically on the basis of the input data.

5.2 Efficient Energy-based Topological Outlier Rejection

The most popular approaches to solve computer vision problems; including 3D re-
construction, camera calibration, image matching and retrieval; are usually based on
point correspondences between two views. Even the matching in most of the recent
multi-view systems, e.g. PMVS [133] or CMVS [134], relies on pair-wise correspon-
dences registering each image pair separately as a first step. These correspondences,
as they count as measured data, might be contaminated by noise and contain outliers
which can corrupt the following estimation processes.

To deal with noise, optimal methods exist such as least-squares fitting. They have
well-established mathematics, favorable statistical properties and have been used
for decades. Removing the outliers from a set of noisy point correspondences is a
more complex task requiring some a priori information about the observed scene in
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most cases. Typically, this information is characterized by a model, e.g. fundamental
matrix or homography. In this section, we address the problem of outlier filtering
from a set of 2D point correspondences without necessarily assuming an underlying
model.

One of the early methods for robust model fitting is the Hough-transform [135]
which was first introduced as a method of detecting complex patterns of points in
binary image data. It achieves this pattern detection by determining specific values
of parameters which characterize these patterns. In 1981, Fischer and Bolles [1] intro-
duced RANSAC, which is based on a very simple approach: hypothesis generation
and validation. It requires a model to estimate and has probabilistic guaranties to
find the best one minimizing a discrete, i.e. close or far, loss function. Even though
(or because of) its simplicity, RANSAC still has very high impact in the computer
vision community, it has thousands of citations and several modifications have been
published year-by-year. Its novel variants, including PROSAC [116], MSAC [136]
or LO-RANSAC [10], exploit RANSAC’s modularity by changing its sampler, cost
function or adding a local optimization step applied to the so-far-the-best model to
achieve higher accuracy or faster convergence. The drawback of these approaches is
the necessity of a single underlying model which cannot be guaranteed in all cases,
e.g. fundamental matrix requires a rigid scene or the points must be coplanar for
homography fitting.

Extending the “single model” approach to multiple ones, e.g. multiple rigid mo-
tions in two-views can be interpreted as multiple fundamental matrices, the range of
describable scenes is widened. However, extending RANSAC to the multi-instance
case has had limited success. Sequential RANSAC [137], [138] detects instances one
after another in a greedy manner, removing their inliers. In this approach, data
points are assigned to the first instance, typically the one with the largest support,
for which they cannot be deemed outliers, rather than to the best instance. Multi-
RANSAC [139] forms compound hypothesis about n instances. Besides requiring
the number n of the instances to be known a priori, the approach increases the size
of the minimum sample and thus the number of hypotheses that have to be val-
idated. Recently, a popular group of methods [13], [15], [27] adopts a two step
process: initialization by RANSAC-like instance generation followed by a point-
to-instance assignment optimization by energy minimization using graph labeling
techniques [140]. Another group of methods uses preference analysis, introduced by
RHA [17], which is based on the distribution of residuals of individual data points
with respect to the instances [83], [84], [141]. Even though the range of describable
scenes is widened, these methods still need a model thus restricting the problem and
introducing another uncertainty factor as the number of the models present in the
scene.

A recently proposed technique, the DT-RANSAC [142], does not require an a pri-
ori model to solve the outlier rejection problem. First, it applies Delaunay triangula-
tion [143] to the point sets in both the first and second images. Then it measures the
distortion caused by each correspondence in the triangulations and all point pairs
are labeled outliers for which the distortion exceeds an user-defined threshold. Its
major advantage is that it does not need a model, however, does not optimize the
topology thus ending up far from the optimum with not enough inliers kept in many
cases.

In this section, we propose a method which exploits the topology of the point
correspondences in order to avoid the need of a model describing the scene. How-
ever, to make it usable for wide range of problems, it can be easily combined with
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FIGURE 5.1: Structural difference of the neighborhoods in test pair johnsona. The

neighborhood-graph is determined by Delaunay-triangulation. Red lines visualize con-

flict edges — edges which do not appear in both graphs. The Topological Distortion
Penalty (TD-Penalty) is determined by the number of red edges.

model fitting as it will be demonstrated later in the section. The used topological in-
formation is similar to that of DT-RANSAC, however, unlike them, we optimize the
point topology in a global manner. The proposed method is based on energy mini-
mization of a binary labeling, thus the solution is obtainable in polynomial time by a
grab-cut-like algorithm [144]: alternation of graph-cut and re-fitting. For most of the
tasks, the method is real time. It will be shown, that it outperforms RANSAC and its
recent variants in term of the ratio of rejected outliers on publicly available datasets.
Additionally, it is applicable to scenes which are degenerate for fundamental matrix
estimation, e.g. non-rigid ones.

5.2.1 Energy-based Topological Outlier Filtering

In this section, we propose a cost function, called Topological Distortion Penalty
(TD-Penalty, see Fig. 5.1), to measure the distortion caused by the outliers in the
neighborhood structures (e.g. determined by the K-Nearest-Neighbors algorithm) in
the two images of 2D point correspondences. Then an energy minimization-based
approach, which can optionally be combined with model estimation, is proposed to
minimize the topological distortion.

Topological Distortion Penalty. Suppose that a set of point correspondences P =
{(pt,ph)}Y, is given in two images. Without assuming an underlying model, e.g.
fundamental matrix or homography, a possible way to investigate the scene struc-
ture is to take the spatial coherence of the points into account, i.e. the neighboring
information. To describe the spatial relations of the correspondences, a trivial pre-
liminary step is to build a neighborhood-graph. Having two images leads to the
question of the space on which the neighborhood-graph should be built: (a) the con-
catenated R* coordinate space, or (b) separately observing the point structures in
each image. In case (a), it is not trivial to define a cost which penalizes the structural
difference between the images, however, case (b) offers a straightforward way to do
so. Thus we chose case (b).

An important note that in this section the similarity of the neighborhoods of a point
correspondence is interpreted as follows: given corresponding points p; and ps. Get
an arbitrary line 1; going through p; and the corresponding line 1, intersecting the
corresponding pixels (thus p2 as well) in the second image. Suppose that the lines
go through the corresponding pixels keeping their orderings. The similarity of the
neighborhoods means that every possible line correspondence keeps the ordering of
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the corresponding pixels. To write this property formally, let us define a few things.
Symbols L? and P? define the 2D line and 3D projective (R? plus the homogeneous
coordinate) spaces, respectively. Function I : L? x P? — {True, False} is true if the
input 2D line intersects the input homogeneous 2D point, otherwise false. Function
O : L? x P? — R projects the input point to the input line and returns the distance
of the projected point from a fixed one on the line (basically, returns parameter ¢
regarding to the point from the parametric line formula p = pg + ¢tv, where py is the
fixed point and v is the tangent direction). Set ©y, 1, = {X | X € PP A I(1;,P1X) A
I(12,P2X)}, where P; is the projection matrix of the ith camera (i € {1,2}). Two
lines correspond if VX € P?: I(1;,P1X) & I(l2, P2X).

Definition 1 (Similarity of neighborhoods). Given corresponding points py and po in
two images which are represented by 3 x 4 projection matrices Py and Py. The neighbor-
hoods of the points are similar if and only if V1,15 € L?, where 1y and 13 are correspond-
iTlg lines, I(ll,pl) and I(lg,pg), VXq,Xy € @11’12 : 0(11,P1X1) < 0(11,P1X2) =4
0(12, P2X1) < 0(12, PQXQ))

First, assume that a convex, rigid scene is observed (see Fig. 5.2(a)). In that case,
the neighbors of each projected point must be the same in both images since perspec-
tive projection does not change the permutation of the points. To be more precise,
choosing a direction and ordering the points along that direction in both images lead
to the same point sequences. Thus if a point has a neighbor in the first image, the
pair of that neighbor should be the neighbor of its corresponding pair on the second
one. To be more precise, given two neighborhood-graphs N* (k € {1,2}) in the two
images. Sets ;' and N7 consist of the indices of the neighbors of point p} in the first
image and that of its corresponding pair p? in the second one, respectively. Due to
the proposed condition V! is equal to N7 if and only if there are no outliers and the
scene is convex.
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FIGURE 5.2: The symmetric difference of sets V! and N7 is visualized by the gray
regions.

Leaving the assumption of convexity (see Fig. 5.2(b)), the previously described
condition holds no more globally. Even so, inside local convex-like regions it still
holds, e.g. in Fig. 5.2(b), the projections of the green and red points are neighbors in
both images. Non-rigidity affects this property in a fairly similar way, even we talk
about the movement of rigid objects (see Fig. 5.2(c)) or some non-rigid materials (see
Fig. 5.2(d)), e.g. endoscope images inside a human body.

Fig. 5.1 visualizes the neighborhoods (created using Delaunay Triangulation) on
test pair johnsona from the AdelaideRMF' dataset. Red lines denote conflict edges
which are edges not presenting in both neighborhood structures. Green ones are for
edges which appear in both images, i.e. the two points of the correspondences are
neighbors in both the first and second images.

To formalize this problem as an optimization, this observation have to be written
as a cost function (called TD-Penalty) measuring the similarity of the point struc-
tures in the two images. Outliers cause differences in the neighboring sets of each
correspondence. Cost

TD(i) = [N} AN?| (5.1)

for the ith correspondence should be minimized, where A is the standard symmet-
ric difference operator of sets (see Fig. 5.2). For the sake of easier understanding,
let us show this through an example. Suppose that the neighborhoods of the first
point pair pi, p? are N} = {2,4,5} and N? = {2,3,5,6}. Thus the vicinities of this
correspondence in the neighborhood-graph of the first and second images consist of
points p3, pl, p} and p3, p2, p?, p3, respectively. Thus the implied cost is the cardi-
nality of the symmetric difference of these two sets TD(1) = [N ANE| = [{3,4,6}] =
3.

Conflict edge. Using the previous formulation, we are able to define conflict edges in
a mathematical way. Suppose that there is an edge efj connecting points pf and p?
in the kth (k € {1, 2}) neighborhood. Edge efj is not a conflict edge if Vk : Elefj, oth-
erwise it is. This states that every edge which does not appear in both neighborhood
structures called conflict edge.

Formulation as Energy Minimization. Having the topological distortion formal-
ized, the problem is to find a correspondence set which minimizes the sum of the
indicated topological energies as follows:

N
Ey(L) = [L(i) = Inlier] - TD(3), (5.2)
=1

"https://cs.adelaide.edu.au/~hwong/doku.php?id=data
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where L(z) : N — {Inlier, Outlier} is a labeling function assigning a label to the ith
(i € [1,n]) correspondence and [.] is the Iverson bracket which is equal to one if the
condition inside holds and zero otherwise.

Reflecting the fact that there might be several labelings solving the problem, e.g.
the one which assigns all correspondences to the outlier class, a second energy has
to be defined penalizing the point removal operation. This second term is as follows:

n

Epr (1) = Y _[L(i) = Outlier] - w;, (5.3)

=1

where w; € R is a weight associated with all point pairs labeled outlier. Weight w;
introduces the way how the method can be combined with model estimation, e.g.
fundamental matrix. It is calculated as follows:

—d; —-D
w; = 8 (5.4)
1 otherwise,

where parameter Deg € {0,1} determines whether the scene is a degenerate one
for fundamental matrix estimation or not. Distance d; measures the fitness of the
correspondence to fundamental matrix F as

P ((P})"Fp})’
1 9 1 9
Fpil’x + Fp}’y + FTpZ% .t FTpiy

(5.5)

where v € R and pf = [pfx pf,y 1]T are a variance parameter of the Gaussian-
kernel and the homogeneous form of the ith point in the kth image, respectively.
S; is the first-order geometric error, i.e. the Sampson-distance, of the ith correspon-
dence w.r.t. the fundamental matrix. To our experience, this cost function leads to
the highest outlier removal rate while keeping the most inliers. Degenerate cases
can efficiently be determined using DEGENSAC [145] or manually set for trivially
non-rigid scenes, e.g. endoscope images of a human body.
Combining the two proposed terms, the following energy is given

1
E(L) = X sd(l) + )‘Epr(l)a (56)
where ) is a parameter balancing the terms. The optimization problem is formalized

as argy, min £(L) and its solution is the labeling which minimizes the energy.

Minimization Strategy. As it is well-known in the field of energy minimization,
the global optimum of a binary labeling problem can be found in polynomial time
applying the s-t graph cut algorithm [140]. For the current problem, a single graph-
cut does not find the optimum since changing a label of an individual correspon-
dence changes (i) the energy originated from its neighbors and (ii) Ep: because the
fundamental matrix depends on the current inlier set. Thus we propose an algo-
rithm (see Alg. 4) similar to grab-cut which is, in brief, an alternated graph-cut and
re-fitting.

The first step of Alg. 4 is the generation of an initial labeling for which we ap-
ply RANSAC with fundamental matrix estimation using a relatively high, 3 pixels,
threshold. According to our experience, this suits for most of the tasks achieving
a rough initial set up. The K-Nearest-Neighbors algorithm is applied to the deter-
mine a neighborhood structure in each image. If the scene is not degenerate, the first
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step of the alternation is the estimation of F’ w.r.t. the current inlier set. To avoid
increasing energy, F’ in the kth iteration is compared against F and F is updated if
the energy (Eq. 5.3) is lower for F’. This step is necessary since the re-estimation of
the fundamental matrix could increase the energy, thus we use the re-estimated one
only if it reduces the energy. In the next step, the problem graph G is built using
the proposed unary terms (see Alg. 5). Function AddTerm1 is discussed by [146] in
depth. Graph-cut is applied to G determining the optimal labeling L; in the ith iter-
ation. The convergence is achieved and the process terminates as soon as the energy
does not change in two iterations.
Note that the fundamental matrix estimation step is not performed for deformable

or non-rigid scenes. This is controlled by parameter Deg.

Algorithm 4 The main algorithm.

Input: P = (pi, p4)™, — data points; k — nearest neighbor
e — threshold, Deg — degenerate scene;
A —energy weight;

Output: L* —labeling

Lo <+ RANSAC(P, ¢); > Default e = 3.0
N1, N? « KNN((p})~,, k), KNN((p%)™,, k); > Using FLANN algorithm
Eo, i, F+ 00,0,0;
repeat
if =Deg then
F’ + FindFundamentalMat(P, L;)
ifi =1|| Epr(Li, F') < Epe(Li, F) then
F <« F
G «+ ConstructGraph(P, F, L;, N\, N2, Deg, \)

O PN Ay

10: Lit1, By < GraphCut(G)

11: Convergence, i +— E; 11 = E;, i+ 1
12: until Convergence

13: L* <+ L;_4

Algorithm 5 Problem Graph Construction.

Input: P = (p}, p)™, — data points; L - labeling
F - fundamental matrix, N'! — 1st neighborhood;
N? - 2nd neighborhood, Deg — degenerate scene;
A — energy weight;

Output: G - problem graph;

1: G < EmptyGraph(), 0;
2: forj =1..ndo
3: cop,c1 < 0,0

4 if L(j) = Inlier then

5 cy %./\/;IA/\/;Q

6: else

7 cl /\wj > Eq 5.4
8 G <+ AddTerm1(G, p, co, c1).
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TABLE 5.1: Applied parameter set up. The first row is the name of the parameter and
the second one consists of the corresponding values.

A € k
1.73 3.00 4

Convergence. It can be easily seen that the main iteration in Alg. 4 does not in-
crease the energy, thus it converges in finite steps. In each loop, graph-cut obtains
the optimal labeling w.r.t. the current fundamental matrix. The energy cannot in-
crease during this step due to the guaranties of graph-cut. Re-estimating the funda-
mental matrix could increase w;, therefore, the new fundamental matrix is used only
if the energy is reduced. Not having monotonically decreasing energy is guaranteed
by the fact that there is a finite number of possible labelings. To our experience, the
algorithm converges in maximum 6 iterations.

Implementation Details. We implemented the proposed method using C++ to-
gether with OpenCV. For Graph-Cut, the code from http://vision.csd.uwo.
ca/code/ is used. Fast Approximated Nearest Neighbors (FLANN) [147] algorithm
is used to construct the neighborhood graphs.

Table 5.1 shows the used parameter set up. According to extensive evaluation
on publicly available datasets, we found that A = 1.7 leads to the solution with the
highest outlier removal ratio. To determine an initial labeling, ¢ = 3.0 pixel suits for
all tasks, even for non-rigid scenes. The k value for the nearest neighbors algorithm
is set to 4.

5.2.2 Experimental Results

In this section, we validate the proposed algorithm on various publicly available real
world datasets presenting rigid or non-rigid scenes and compare it with the state-
of-the-art techniques. Each property of a method, such as the outlier filtering ratio,
is computed as the mean of the successful tests. A test is considered successful if
at least one outlier is removed and one inlier remained. A filtering is considered
perfect if all the outliers are removed.

Rigid Scenes. To test the method on rigid scenes, we used the AdelaideRMF dataset’.
It consists of 18 image pairs with point correspondences each manually assigned to a
plane using a label. Correspondences marked by label zero are the outliers, i.e. incor-
rect point matches. In Fig. 5.3, test pair oldclassicswing is shown. In each figure,
the left, the middle, and the right columns consist of the neighborhood of the original
point pairs, the neighborhood after the initialization and the final one, respectively.
The original graphs contain many conflict edges which are mostly caused by the
outliers. The results become much better after the label initialization step, however,
they still contain several dissimilarities. The final results do not contain any conflict
edges in both images.

The proposed algorithm is compared with the following methods: normalized
RANSAC fundamental matrix (FM) estimation, normalized LMeDS FM estimation®,
normalized MLESAC FM estimation*, and DT-RANSAC [142]°. All algorithms are

nttp://cs.adelaide.edu.au/~hwong/doku.php?id=data
*We applied the OpenCV 3 implementation of RANSAC and LMeDS.
‘nttps://code.google.com/p/itlab-computer-vision/.
°Our implementation is used.


http://vision.csd.uwo.ca/code/
http://vision.csd.uwo.ca/code/
http://cs.adelaide.edu.au/~hwong/doku.php?id=data
https://code.google.com/p/itlab-computer-vision/
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FIGURE 5.3: Image pair oldclassicswing (rows). The left, middle, and right columns
visualize the original input data, the points after the initialization, and the resulting
neighborhood structure, respectively.

implemented in C++. The used threshold and other parameters are tuned for each
method separately to obtain the most accurate mean result on all test cases. The fi-
nal fundamental matrix is estimated applying the normalized eight-point algorithm
followed by the Levenberg-Marquardt [85] optimization exploiting the remaining
inliers.

Table 5.2 reports the results on the AdelaideRMF dataset. For each method, the
first, second and third columns report the percentage of removed outliers (O), kept
inliers (I) and the error of the estimated fundamental matrix (£), respectively. It can
be seen that the proposed one achieves the highest outlier removal rate for all but
two test scenes, its mean and median accuracy is also the highest. As a consequence,
the estimated fundamental matrix is closer to the ground truth, i.e. the obtained mean and
median errors are lower than that of the competitor methods. Even though the ratio
of the kept inliers is the second lowest, the fundamental matrix was estimable in all
test cases.

To get a comprehensive picture, Fig. 5.4 reports all the tested methods and all
the aspects of comparison. The red column shows the outlier removal capability.
The blue and green ones show the percentages of the kept inliers and frequencies of
perfectly filtered cases, respectively. These values are computed on different subsets
of the annotated correspondences. The first 20, 30, 40, 50, ..., n, points are processed
separately by all methods. Thus the reported values are computed as the mean of
705 runs. The outlier removal and perfect filtering rates of the proposed technique
are the highest. Even though the number of the kept inliers is the lowest, it is usually
sufficient for model fitting, i.e. to estimate a fundamental matrix.

The left and right plots of Fig. 5.5 visualize the outlier removal ability and the
percentage of the remaining inliers for each method as the function of the outlier
level in the input, respectively. Fig. 5.5 shows the same trend as Fig. 5.4. LMedS is
not shown over 50% of outliers since it is not applicable to that cases. However, its
filtering accuracy is not as high as that of the other methods even below that. It can
be seen that the proposed algorithm yields the highest outlier recognition rate.

Table 5.3 reports the mean and median processing times in milliseconds. Even
though LMeDS and RANSAC are the fastest ones, the proposed method is still appli-
cable in real time achieving around 2-3 times slower processing time than RANSAC.
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TABLE 5.2: The outlier removal rate (O, in percentage), the ratio of the kept inliers
(I, in percentage) and the error of the estimated fundamental matrices (£) using the
obtained labeling are reported. £ is the Frobenious-norm of the difference matrix of
the ground truth and estimated fundamental matrices. The methods are applied to the
AdelaideRMF homography dataset consisting of 18 image pairs of rigid scenes (rows):
(1) hartley, (2) johnsona, (3) johnsonb, (4) ladysymon, (5) neem, (6) oldclassicswing,
(7) sene, (8) physics, (9) bonython, (10) unionhouse, (11) elderhalla, (12) library, (13)
napiera, (14) barrsmith, (15) elderhallb, (16) napierb, (17) unihouse, (18) bonhall.

Proposed DT-RSC LMedS RANSAC MLESAC

O I ¢ O I ¢£ O I £ o I £ O I ¢
1) 98 23 032 99 63 3.01| 46 100 242 | 99 44 241| 99 4 191
(2) ({100 38 0.01| 92 91 0.00|100 94 0.0 100 73 0.01 | 100 22 0.02
(3 ||100 57 0.00| 95 93 001|100 88 0.00| 100 64 0.00 | 99 36 0.09
(4) (|100 37 0.02| 95 8 031| 99 96 0.00 100 79 0.01| 97 52 0.03
®) 98 57 0.04|100 81 0.00| 94 98 0.00| 99 49 003 | 8 74 0.11
(6) || 100 47 0.00| 96 87 0.04| 98 100 0.00 | 100 61 0.01 | 99 58 0.08
(7) || 100 34 0.00 98 80 0.04| 96 100 0.00 | 100 45 0.01 | 97 15 0.14
®) 98 34 0.00 | 100 76 0.00 | 100 100 0.00 | 100 47 0.00 | 8 3 0.01

9 (100 50 0.03| 99 71 0.03 3 100 0.02| 98 67 001|100 6 -
(10) || 100 37 0.07 - 16 100 0.05| 99 38 0.06 | 95 1 026

(11) {100 39 001 | 98 8 0.01 | 35 100 0.00| 99 37 0.01 100 1 -
(12) 99 34 0.01| 97 76 019| 77 100 0.01 | 99 49 001| 98 3 041
(13) 99 23 005| 95 55 0.07| 52 100 0.00 | 99 22 006 | 98 6 0.04
(14) 99 28 0.00 99 55 0.02| 27 100 0.01 | 100 43 0.00 | 100 8 0.08
(15) || 100 51 0.01 - 94 100 0.05| 99 47 0.02| 99 10 0.07
(16) || 100 29 0.01 | 95 82 027 | 96 100 0.03 | 100 42 0.12 | 100 12 0.03
17) 99 70 0.02| 8 82 007| 81 100 0.01 | 93 64 0.01| 8 89 0.04
(18) || 100 71 0.00 - 77 100 0.02| 74 59 0.00| 88 63 0.01
avg 99 42 0.03| 96 77 027 | 72 98 015| 98 52 0.16| 9 26 021
med || 100 38 0.01 | 97 81 004| 8 100 0.01 | 99 48 0.01| 99 11 0.08

DT RANSAC

LMeDS

RANSAC

MLESAC

PROPOSED

0 10 20 30 40 50 60 70 80 90
Outlier level

100 110

M outlier ratio M Inlier ratio Perfect filtering

FIGURE 5.4: Performance comparison of robust methods. The red bar visualizes the

percentage of the removed outliers for each method. The blue one shows the ratio of

the kept inliers. The green line presents the percentage of the cases when all of the
outliers are removed successfully.
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Removed outliers
o
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FIGURE 5.5: The outlier removal accuracy (left) and the percentage of kept inliers (right)
is reported w.r.t. increasing outlier level.

TABLE 5.3: The processing time in milliseconds of each method applied to the
AdelaideRMF dataset.

Proposed DT-RSC LMedS RANSAC MLESAC
Mean Time (msec) 54 931 18 16 914
Median Time (msec) 28 820 11 18 543

Multiple Rigid Motions. In order to test the proposed method on image pairs for
which a single fundamental matrix is not estimable, the AdelaideRMF motion dataset
is exploited. Each image pair contains point correspondences manually assigned to
a rigid motion or to the outlier class. Usually, two-view multiple rigid motion detec-
tion is solved by a multi-model fitting algorithm, e.g. PEARL [13], estimating mul-
tiple fundamental matrices simultaneously. Correspondences not belonging to any
motions are considered outlier. For tasks, that only require the removal of outliers,
applying the proposed method is beneficial. It is able to remove the outliers without
assuming restrictive constraints, e.g. scene rigidity, thus generalizing and speeding
up the process.

The proposed technique is compared with PEARL [13], T-Linkage [84], MFIPG
[15], and RPA [141]. We choose these methods since their implementations are pub-
licly available and they can be considered as state-of-the-art. Multi-model fitting
methods are applied to each scene, then correspondences which are assigned to a
motion considered inlier. All methods, including the proposed one, used a fixed pa-
rameter set up during the tests. The parameters for each method maximizing the
mean outlier removal accuracy on all test cases are determined by extensive experi-
mentation.

Table 5.4 reports the results of each method (rows) applied to each scene (columns).
Even and odd columns show the outlier removal rates and the ratio of the kept in-
liers, respectively. It can be seen that the proposed method achieves the highest
accuracy in both aspects. The reason, to our experience, is that multi-model fitting
algorithms are very sensitive to the parameters, thus using a fixed set up leads to
high reduction in accuracy. Fig. 5.5 presents that the processing time of the pro-
posed method is the lowest — an order of magnitude faster than PEARL - and appli-
cable in real time. Even so, this comparison with the multi-model fitting algorithms
is slightly unfair since they aim at a more complex problem than outlier filtering.
However, to the best of our knowledge, there is no other alternative to solve such
problems.
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TABLE 5.4: The accuracy of each method (columns) applied to scenes (rows) contain-
ing multiple rigid motions. Columns marked by O show the percentage of removed
outliers and I shows the ratio of kept inliers. Incorrectly assigned correspondences
are considered as outliers and point pairs belonging to a rigid motion are as inliers.
See Table 5.5 for the processing times. Test pairs: (1) book, (2) breadcartoychips, (3)
breadcube, (4) breadcubechips, (5) breadtoy, (6) breadtoycar, (7) carchipscube, (8)
cube, (9) cubebreadtoychips, (10) cubechips, (11) cubetoy, (12) dinobooks, (13) game,
(14) gamebiscuit, (15) toycubecar.

Proposed MFIPG PEARL T-Link RPA

O (%) I(%) | O%) I(%) | O I(%)|O(%) I(%) | O (%) I(%)

(1) 98 79 87 6 83 34 66 47 96 45
(2) 100 27 97 13 95 3 82 20 98 16
3) 96 45 91 8 97 31 81 27 99 69
4) 96 30 91 13 93 17 79 11 99 16
@) 100 76 94 13 94 43 78 14 97 12
(6) 96 22 91 10 89 13 75 26 96 43
(7) 98 44 92 13 90 7 65 27 95 30
8) 100 69 92 9 97 6 87 11 96 12
) 97 36 92 9 98 7 92 13 98 40
(10) 100 40 86 13 93 20 90 6 100 52
(11) 98 44 94 13 96 1 81 15 99 15
(12) 90 35 91 16 88 16 12 97 97 15
(13) 100 49 97 3 79 9 82 16 98 28
(14) 100 64 90 7 92 11 90 13 97 65
(15) 97 43 90 12 88 3 74 14 98 8
avg 98 47 92 11 91 15 76 24 98 31
med 98 44 91 12 93 11 81 15 98 28

TABLE 5.5: The mean and median processing times (in milliseconds) on multiple rigid
motion detection applied to the AdelaideRMF motion dataset.

Proposed PEARL MFIPG T-Link RPA

Mean Time (msec) 19
Median Time (msec) 22

237
155

723
696

2212
2111

18 445
18 655




5.2. Efficient Energy-based Topological Outlier Rejection 83

FIGURE 5.6: Pairs (rows) of endoscope images of the peritoneum. The scenes are non-
rigid and the surfaces are shiny.

Non-Rigid Scenes. In this section, we show that the proposed method is appli-
cable to scenes which are not describable by a finite combination of rigid motions.
Such scenes are showed in Fig. 5.6 visualizing endoscope images of a peritorium.
Each row is an image pair. The observed surface is extremely deformable, thus not
interpretable by a mathematical model. Because of the shininess and nearly homo-
geneous regions, the feature matching process yields high outlier ratio even if the
baseline is low. In order to obtain some information about the movements in the
scene, e.g. camera or surface, the first step is the outlier removal.

Table 5.6 reports the achieved results on each image pair (rows) of Fig. 5.6. The
second and third columns show the point and outlier numbers, respectively. The
fourth column contains the outlier removal percentages and the last one is the ratio
of the remaining inliers. It can be seen that the proposed method removes most
of the outliers and keeps high percentage of inliers. Surprisingly, the ratio of the
kept inliers is higher than for the other test cases. However, this is explainable by
the quasi-convexity of these scenes since small surface deformities do not affect the
neighborhood systems.
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TABLE 5.6: Results of the proposed method applied to endoscope images of the peri-
toneum. The scenes are non-rigid and the surface is shiny. Each row corresponds to a
row in Fig. 5.6. The second and third columns report the point and outlier number in
each test, the last two columns show the percentages of the removed outliers and kept

inliers.
Fig. 5.6 | Point# Outlier# Removed Outliers Kept Inliers
(1) 76 26 92% 88%
(2) 96 30 97% 90%
(3) 455 25 100% 93%
4) 56 44 86% 83%
®) 80 53 98% 74%

5.2.3 Summary

A novel approach is proposed to remove outliers from a set of correspondences.
Generally, the proposed technique does not require any a priori models interpreting
the scene, thus it is applicable without strict preconditions, e.g. rigidity. In cases,
when the data are explainable by a model, e.g. fundamental matrix, the method can
straightforwardly be specialized and achieves state-of-the-art outlier rejection ratio.
Therefore, the fundamental matrices estimated exploiting the obtained correspon-
dences are the most accurate ones. For scenes containing multiple rigid motions,
the proposed approach is orders of magnitude faster than multi-model fitting algo-
rithms and outperforms them in terms of rejection ratio as well as the number of kept
inliers. It is applicable to image pairs showing fully deformable materials and ob-
tains accurate results. Due to its real time performance, it will not be the bottleneck
of e.g. structure-from-motion pipelines.

5.3 Graph-Cut RANSAC

The RANSAC (RANdom SAmple Consensus) algorithm proposed by Fischler and
Bolles [1] in 1981 has become the most widely used robust estimator in computer
vision. RANSAC and similar hypothesize-and-verify approaches have been suc-
cessfully applied to many vision tasks, e.g. to short baseline stereo [148], [149], wide
baseline stereo matching [46], [86], [150], motion segmentation [148], image mosaic-
ing [151], detection of geometric primitives [152], multi-model fitting [139], or for
initialization of multi-model fitting algorithms [13], [15].

In brief, the RANSAC approach repeatedly selects random subsets of the input
data and fits a model to them, e.g. a line to two 2D points or a fundamental matrix to
seven point correspondences. In the second step, the model support, i.e. the number
of inliers, is obtained. The model with the highest support, polished e.g. by a least-
squares fit on inliers, is returned.

In the last three decades, many modification of RANSAC have been proposed.
For instance, NAPSAC [153], PROSAC [116] or EVSAC [154] modify the sampling
strategy to increase the probability of selecting an all-inlier sample earlier. NAPSAC
considers spatial coherence of the input data points, PROSAC exploits the order-
ing of the points by their inlier probability, EVSAC uses an estimate of confidence
in each point. The model support computation step had also been discussed in
several papers, e.g. MLESAC [155] and MSAC [43]. The model is estimated by a
maximume-likelihood process, albeit under certain assumptions, with all its benefi-
cial properties. In practice, MLESAC results are often superior to the inlier counting
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of plain RANSAC and less sensitive to the used-defined threshold. The termination
of RANSAC is controlled by a manually set confidence value ¢ and the sampling
stops when the probability of finding a model with higher support falls below ¢°.

Observing that in practice RANSAC requires more samples than theory predicts,
Chum et al. [10] identified a problem that not all all-inlier samples are “good”, i.e.
lead to a model accurate enough to distinguish all inliers, e.g. due to poor condition-
ing of the selected random all-inlier sample. Chum et al. [10] address the problem by
introducing the locally optimized RANSAC (LO-RANSAC) that augments the orig-
inal approach with a local optimization step applied to the so-far-the-best model. In
the original paper [10], local optimization is implemented as an iterated least squares
re-fitting with a shrinking inlier-outlier threshold inside an inner RANSAC applied
only to the inliers of the current model. In the reported experiments, LO-RANSAC
outperforms standard RANSAC in both accuracy and the required number of iter-
ations. The number of LO runs is close to the logarithm of the number of verifica-
tions, and it does not create a significant overhead in the processing time in most of
the cases tested.

However, it was shown by Lebeda et al. [156] that for models with high inlier
counts the local optimization step becomes a computational bottleneck of the pro-
cess due to the iterated least-squares model fitting. This is fixed by using a 7m-sized
subset of the inliers in each LO step, where m is the size of a minimum sample; the
factor of 7 was set by exhaustive experimentation. The idea of local optimization has
been included in state-of-the-art RANSAC approaches like USAC [11]. Neverthe-
less, the LO procedure remains ad hoc, complex and requires multiple parameters.

In this paper, we combine two strands of research to obtain a state-of-the-art
RANSAC. So far, in the large body of RANSAC-related literature, the inlier-outlier
decision has always been a function of the distance to the model, done individually
for each data point. Yet both inliers and outliers are spatially coherent, a point near
an outlier or inlier is more likely to be an outlier or inlier respectively. Spatial coher-
ence, leading to the Potts-model [157], has been exploited in many vision problems,
e.g. in segmentation [158], multi-model fitting [13], [15] or sampling [153]. It has
probably been always considered computationally prohibitive to formulate model
verification in RANSAC as a graph-cut problem. But when applied as the LO-step
in [10] just on the so-far-the-best model, the number of graph-cut is only the logarithm
of the number sampled and verified models, and can be achieved in real-time.

The novel method, called Graph Cut RANSAC (GC-RANSAC) is simply an LO-
RANSAC with graph-cut as local optimization. GC-RANSAC is superior to LO-
RANSAC in a number of aspects. First, as mentioned above, it is capable to model
spatial coherence of inliers and outliers. Second, the LO step is conceptually simple,
easy to implement, globally optimal and computationally efficient graph cut with
only a few intuitive and learnable parameters unlike the ad hoc, iterative and com-
plex LO steps [10]. Third, we show experimentally that GC-RANSAC outperforms
LO-RANSAC and its recent variants in both accuracy and the required number of
iterations on a wide range of publicly available datasets. On many problems, it is
faster than the competitors in terms of wall-clock time. Finally, we were surprised
to observe that GC-RANSAC terminates before the theoretically expected number of
iterations. The reason is that the local optimization that takes spatial proximity into
account is often capable of converging to a “good” model even when starting from
a sample that is not all-inlier, i.e. it contains an outlier or outliers.

%This interpretation of ¢ holds for the standard cost function only.
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5.3.1 Local Optimization and Spatial Coherence

In this subsection, we formulate the inlier selection of RANSAC as an energy min-
imization considering point-to-point proximity. The proposed local optimization is
seen as an iterative energy minimization of a binary labeling (outlier — 0 and inlier —
1). For the sake of simplicity, we start from the original RANSAC scheme and then
formulate the maximum-likelihood estimation as an energy minimization. The term
considering the spatial coherence will be included into the energy. Finally, we pro-
pose a technique to set the parameter balancing the energy terms automatically on
the basis of the input.

Formulation as Energy Minimization. We assume that a point set ? C R" (n > 0),
a model represented by a parameter vector § € R™ (m > 0) and a distance function
¢ : P x R™ — R measuring the point-to-model assignment cost are given.

For the standard RANSAC scheme which applies a top-hat fitness function (1 -
close, 0 - far), the implied unary energy is:

Efoay(L) = Z [ Lp|l10;135

peEP

where
0 if(L,=1A¢(p,0) <€)V
1Lyl {01} = (Ly =0A¢(p,0) > ¢)
1 otherwise.

Parameter L € {0,1}"! is a labeling, ignored in standard RANSAC, L, € L is the
label of point p € P, |P| is the number of points, and e is the inlier-outlier threshold.
Using energy Eyq;y we get the same result as RANSAC since it does not penalize
only two cases: (i) when p is labeled inlier and it is closer to the model than the
threshold, or (ii) when p is labeled outlier and it is farer from the model than e. This
is exactly what RANSAC does.

Since the publication of RANSAC, several papers discussed, e.g. [156], replac-
ing the {0,1} loss with a kernel function K : R x R — [0,1], e.g. the Gaussian-
kernel. Such choice is close to maximum likelihood estimation as proposed in MLE-
SAC [155]. This improves the accuracy and reduces the sensitivity on threshold e.
Unary term F exploiting this continuous loss is as follows:

Ex(L) = |ILyllx,
peEP
where
_ JK(é(p,0),¢) L, =1
ol = {1—K(¢>(p,9),e) if L, =0 (57)
and 2
K(5,¢) = e 2. (5.8)

In GC-RANSAC, we use Ei as the unary energy term in the graph-cut based verifi-
cation.

Spatial Coherence. Benefiting from a binary labeling energy minimization, we are
able to include additional energy terms, i.e. consider spatial coherence of the points,
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yet keep the problem solvable efficiently and globally via the standard graph-cut algorithm.

Considering point proximity is a well-known approach for sampling [153] or
multi-model fitting [13], [15], [27]. To the best of our knowledge, there is no paper
exploiting it in the local optimization step of methods like LO-RANSAC. Applying
the Potts-model which penalizes all neighbors having different labels would be a
justifiable choice to be the pair-wise energy. The problem arises when the data con-
tains significantly more outliers, probably close to desired model, than inliers. In that
case, penalizing differently labeled neighbors using the same penalty for all classes
many times leads to the domination of outliers forcing all inliers to be labeled outlier.
To overcome this problem, we modified the Potts-model to use different penalty for
each neighboring point pair on the basis of their distances. The proposed pair-wise
energy term is

1 if L, # Lg
Eg(L) = Z %(Kp + Ky) ifLpy=1Ly=0, (59)
Pa)eA (1 - 3(Ky+ Ky) ifL,=Lg=1

where K, = K(¢(p,0),€), K4 = K(¢(q,0),€) and (p, q) is an edge of neighborhood
graph A between points p and ¢. In Eg, if both points labeled outlier the penalty
is 2(K, + K,) thus “rewarding” label 0 if the neighboring points are far from the
model. The penalty of considering a point as inlier is 1 — 1(K), + K,) which rewards
the label if the points are close to the model.

The proposed overall energy measuring the fitness of points to a model and con-
sidering spatial coherence is E(L) = Ex (L) + AEg(L), where X is a parameter bal-
ancing the terms. The globally optimal labeling L* = argmin;, E(L) can easily be
determined in polynomial time using graph-cut algorithm.

5.3.2 GC-RANSAC

In this subsection, we include the proposed energy minimization-based local opti-
mization into RANSAC. Benefiting from this new approach, the LO step is getting
simpler and cleaner than that of LO-RANSAC.

The main algorithm is shown in Alg. 6. The first step is the determination of
neighborhood graph A for which we use a sphere with a predefined radius r — this
is a parameter of the algorithm. Remark that for anisotropic spaces, a hyper-ellipsoid
should be used instead of a (hyper-)sphere. In Alg. 6, function H is as follows [1]:

e oy log(u)
H(|L*|, 1) = log(1— P,) (5.10)

where Pr = (I£') /(IP1) It calculates the required iteration number of RANSAC on
the basis of desired probability 1, the size of the required minimal point set m and
the inlier number |L*| regarding to the current so-far-the-best model. Note that norm
| - | applied to the labeling counts the inliers.

Every kth iteration draws a minimal sample using a sampling strategy, e.g. PROSAC
[116], then computes the parameters 6, of the implied model and its support

w, = Y K(6(p,0k), ) (5.11)

peEP
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w.r.t. the data points, where function K is a Gaussian-kernel as proposed in Eq. 5.8.
If wy, is higher than that of the so-far-the-best model w*, this model is considered the
new so-far-the-best, all parameters are updated, i.e. the labeling, model parameters
and support, and local optimization is applied if needed. Note that the application
criterion of the local optimization step is discussed later.

The proposed local optimization is written in Alg. 7. The main iteration can
be considered as a grab-cut-like [144] alternation consisting of two major steps: (i)
graph-cut and (ii) model re-fitting. The construction of problem graph G using unary
and pair-wise terms Egs. 5.7, 5.9 is shown in Alg. 8. Functions AddTerm1 and Ad-
dTerm2 are discussed by [146] in depth. Graph-cut is applied to G' determining
the optimal labeling L which considers the spatial coherence of the points and their
distances from the so-far-the-best model. Model parameters 6 are computed using a
7m-sized random subset of the inliers in L, thus speeding up the process, similarly
to [156] does, where m is the size of a minimal sample, e.g. m = 2 for lines. Note
that 7m is set by exhaustive experimentation in [156] and this value also suited for
us. Finally, the support w of 6 is computed and the so-far-the-best model is updated
if the new one has higher support, otherwise the process terminates. After the main
algorithm, a local optimization step is applied if it is not performed at least once
during the algorithm, and the parameters of the obtained so-far-the-best model is re-
estimated using the whole inlier set similarly to plain RANSAC does.

Remark: Adding to the local optimization step a RANSAC-like procedure select-
ing Tm-size samples is straightforward. In our experiments, it had a high computa-
tional overhead without adding significantly to accuracy.

Algorithm 6 The GC-RANSAC Algorithm.
Input: P — data points; r — sphere radius, e — threshold
€conf — LO application threshold, ; — confidence;
Output: 6 - model parameters; L —labeling

1: w*,nro < 0,0.
2: A < Build neighborhood-graph using r.
3: fork=1— H(|L*|, ) do >Eq. 5.10

4: Sj, <= Draw a minimal sample.

5: 01, < Estimate a model using S,.

6: wy, < Compute the support of 6. >Eq.5.11
7: if wg > w* then

8: 0*, L*, w* < 0y, L, w;.

9: if ApplyLocalOptimization(e.ons) then
10: 910, Lro,wro < Local opt. > Alg. 7
11: nro < nro + 1.
12: if wpo > w* then
13: 0*, L*, w* < 010, Lro,wro
14: if nyo = 0 then
15: 0*, L*,w* < Local opt. > Alg. 7
16: 6" < model fitting using L*. > E.g. least squares fitting

The criterion for applying the LO step was proposed to be: (i) the model is
so-far-the-best and (ii) after a user-defined iteration limit, in [156]. However, in our
experiments, this approach still spends significant time on optimizing models which
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Algorithm 7 Local optimization.
Input: P — data points, L* — labeling,
w* — support, 0* —model;
Output: L}, —labeling, w} , — support, 07 , — model;

1: wig, Lo, 070, changed < w*, L*, 0%, 1.

2: while changed do

3: G < Build the problem graph. > Alg. 8
4 L < Apply graph-cut to G.

5: I7,, < Select a Tm-sized random inlier set.

6: 0 «+ Fit a model using labeling I7,,.

7 w <~ Compute the support of 6.

8 changed + 0.

9 if w > wj, then
10: 070, L10, Wl o, changed < 0, L, w, 1.

Algorithm 8 Problem Graph Construction.
Input: P — data points, A — neighborhood-graph
6 — model parameters, 6* — model;
Output: G - problem graph;

1: G < EmptyGraph().

2: forp € P do

3 cp,c1 < K(o(p,0),1—K(o(p,0),€)

G + AddTerm1(G, p, co, c1).

: for (p,q) € Ado

Co1, C10 < 1, 1.

Coo 05(K(¢(q7 9) + K(¢(pa 0))

cir < 1 —0.5(K(é(q,0) + K(o(p, 0)).
G+ AddTermZ(G, P, 4, oo, Co1, C10, C11)-

D AN LI
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TABLE 5.7: Setting for the tests. Outlier threshold (¢), radius used for proximity compu-
tation (r), weight of the pair-wise term (\), and the threshold of the confidence change

(€conf)-

€ r A €conf

031 | 20px | 0.10 | 10

are not promising enough. We introduce a simple heuristics for replacing the iter-
ation limit with a data driven strategy which allows to apply LO only a few times
without deterioration in accuracy.

As it is well-known for RANSAC, the required iteration number &, w.r.t. the inlier
ratio 7, sample size m and confidence g, is calculated as k = log(1 — u)/log(1l —
n™). Re-arranging this formula to ; leads to equation p = 1 — 10¥1°8(1=7™") which
determines the confidence of finding the desired model in the kth iteration if the
inlier ratio is 7.

Suppose that the algorithm finds a new so-far-the-best model with inlier ratio 7
in the koth iteration, whilst the previous best model was found in the k;th iteration
with inlier ratio 71 (k2 > k1, 72 > 11). The ratio of the confidences 12 in those two
models is calculated as follows:

Lo 1— 10k2 log(1—n4")

P BT Lo

(5.12)

In experiments, we observed that a model that leads to termination if optimized of-
ten shows a significant increase in the confidence. Replacing the parameter blocking
LO in the first k iterations, we adopt a criterion 12 > €conf, Where eqonf is a user-
defined parameter determining a significant increase.

5.3.3 Experimental Results

In this section, GC-RANSAC is validated both on synthesized and publicly avail-
able real world data and compared with plain RANSAC [1], LO-RANSAC [10],
LOT-RANSAC, LO’-RANSAC [156], and EP-RANSAC [159]. The parameter set-
ting is reported in Table 5.7. For EP-RANSAC’, we tuned the threshold parameter
to achieve the lowest mean error and the other parameters were set to the values
reported by the authors. Note that the comparison of the processing time with this
method is affected by the availability of a Matlab implementation only. All meth-
ods apply PROSAC [116] sampling and encapsulates the point-to-model distance, e.g.
re-projection error for homographies, with a Gaussian-kernel using ¢ = 0.31, which
is set by an exhaustive search. EP-RANSAC uses inlier maximization strategy since
its cost function cannot be replaced straightforwardly. The radius of the sphere to
determine neighboring points is 20 pixels and it is applied to the concatenated 4D
coordinates of the correspondences. Parameter A for GC-RANSAC was set to 0.1
and e.ons = 10.

Synthetic Tests on 2D Lines. To compare GC-RANSAC with the state-of-the-art in
a fully controlled environment, we chose two simple tests: detection of a 2D straight
or dashed line. For each trial, a 600 x 600 window and a random line was generated
in its implicit form, sampled at 100 locations and zero-mean Gaussian-noise with o

"The Matlab source is available at http://cs.adelaide.edu.au/~huu/publication/
exact_penalty/
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FIGURE 5.7: The mean angular error (in degrees) of the obtained 2D lines plotted as the
function of noise o (in pixels). On each noise o, 1000 runs were performed. The line
type and outlier number is (a) straight line, 100%, (b) straight line, 500% (c) dashed line,

100% and (c) dashed line, 500%.

standard deviation was added to the coordinates. For a straight line, the points were
generated using uniform distribution (see Fig. 5.8(a)). For a dashed line, 10 knots
were put randomly into the window, then the line is sampled at 10 locations with
uniform distribution around each knot, at most 10 pixels far (see Fig. 5.8(b)). Finally,
k outliers were added to the scene. 1000 tests were performed on every noise level.
Fig. 5.7 shows the mean angular error (in degrees) plotted as the function of the
noise o. The first and second rows report the results of the straight and dashed line
cases. For the two columns, 100 and 500 outliers were added, respectively. Accord-
ing to Fig. 5.7, GC-RANSAC obtains more accurate lines than the competitor algorithms.

TABLE 5.8: Percentage of “not-all-inlier” minimal samples leading to the correct solu-
tion during line (L) and fundamental matrix (F) fitting. For lines, the average over 1000
runs on three different outlier percentage (100%, 500%, 1000%) and noise levels 0.0 —9.0
px is reported, thus 15000 runs were performed. For F, the mean of 1000 runs on the

AdelaideRMF dataset is shown.

LO | LOT | LO’ | GC
L| 6% /| 5% | 4% | 15%
F | 29% | 30% | 24% | 32%
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FIGURE 5.8: An example input for (a) straight and (b) dashed lines. The 1000 black
points are outliers, the 100 red ones are inliers. Best viewed in color.

Estimation of Fundamental Matrix. To evaluate the performance of GC-RANSAC
on fundamental matrix estimation, we used kusvod?2 (24 pairs)®, Multi-H’ (5 pairs),
and AdelaideRMF'? (19 pairs) datasets (see Fig. 5.9 for examples). Kusvod2 consists
of 24 image pairs of different sizes with point correspondences and fundamental
matrices estimated using manually selected inliers. AdelaideRMF and Multi-H con-
sist a total of 24 image pairs with point correspondences, each assigned manually
to a homography (or the outlier class). For them, all points which are assigned to
a homography were considered as inliers and others as outliers. On total, the pro-
posed method was tested on 48 image pairs from three publicly available datasets
for fundamental matrix estimation. All methods applied the 7-point method [43] to
estimate F, thus drawing minimal sets of size seven in each RANSAC iteration. For
the model re-estimation from a non-minimal sample in the LO step, the normalized
8-point algorithm [47] is used. Note that all fundamental matrices were discarded
for which the oriented epipolar constraint [160] did not hold.

The first three blocks of Table 5.9, each consisting of four rows, report the quality
of the epipolar geometry estimation on each dataset as the average of 1000 runs on
every image pair. The first two columns show the name of the tests and the investi-
gated properties: (1) LO: the number of applied local optimization steps (graph-cut
steps are shown in brackets). (2) £ is the geometric error (in pixels) of the obtained
model w.r.t. the manually annotated inliers. For fundamental matrices and homo-
graphies, it is defined as the average Sampson distance and re-projection error, re-
spectively. For essential matrices, it is the mean Sampson distance of the implied
fundamental matrix and the correspondences. (3) 7 is the mean processing time in
milliseconds. (4) S is the average number of minimal samples have to be drawn
until convergence, basically, the number of RANSAC iterations.

It can be clearly seen that for fundamental matrix estimation GC-RANSAC al-
ways obtains the most accurate model using less samples than the competitive methods.

®http://cmp. felk.cvut.cz/data/geometry2view/
‘http://web.eee.sztaki.hu/~dbarath/
©cs.adelaide.edu. au/~hwong/doku.php?id=data
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(e) Essential matrix; Strecha dataset (f) Affine transformation; SZTAKI dataset

FIGURE 5.9: Results of GC-RANSAC on example pairs from each dataset and problem.
Correspondences are drawn by lines and circles, outliers by black lines and crosses,
every third correspondence is drawn.

Estimation of Homography. In order to test homography estimation we down-
loaded homogr!'! (16 pairs) and EVD'? (15 pairs) datasets (see Fig. 5.9 for examples).
Each consists of image pairs of different sizes from 329 x 278 up to 1712 x 1712 with
point correspondences and manually selected inliers — correctly matched point pairs.
Homogr dataset consists of short baseline stereo pairs, whilst the pairs of EVD undergo
an extreme view change, i.e. wide baseline. All methods apply the normalized four-
point algorithm [43] for homography estimation both in the model generation and
local optimization steps. Therefore, each minimal sample consists of four correspon-
dences.

The 4th and 5th blocks of Fig. 5.9 show the mean results computed using all
the image pairs of each dataset. It can be seen that GC-RANSAC obtains the most
accurate models for all but one, i.e. EVD dataset with time limit, test cases.

Estimation of Essential Matrix. To estimate essential matrices, we used the strecha
dataset [161] consisting of image sequences of buildings. All image sizes are 3072 x
2048. The ground truth projection matrices are provided. The methods were ap-
plied to all possible image pairs in each sequence. The SIFT detector [4] was used
to obtain correspondences. For each image pair, a reference point set with ground
truth inliers was obtained by calculating the fundamental matrix from the projection
matrices [43]. Correspondences were considered as inliers if the symmetric epipolar

Uhttp://cmp. felk.cvut.cz/data/geometry2view/
http://cmp. felk.cvut.cz/wbs/
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distance was smaller than 1.0 pixel. All image pairs with less than 20 inliers found
were discarded. In total, 467 image pairs were used in the evaluation.

The results are reported in the 6th block of Table 5.9. The reason of the high
processing time is that the mean inlier ratio is relatively low (27%) and there are
many correspondences, 2323, on average. GC-RANSAC obtains the most accurate
essential matrices both in the wall-clock time limited and solution confidence above
95% experiments. A significant drop can be seen in accuracy for all methods if a time
limit is given.

Estimation of Affine Transformation. The SZTAKI Earth Observation dataset'®
[162] (83 image pairs of size 320 x 240) was used to test estimation of affine trans-
formations. The dataset contains images of busy road scenes taken from a balloon.
Due to the altitude of the balloon, the image pair relation is well approximate by
an affine transformation. Point correspondences were detected by the SIFT detector.
For ground truth, 20 inliers were selected manually. Point pairs with the distance
from the ground truth affine transformation lower than 1.0 pixel were defined as
inliers.

The estimation results are shown in the 7th block of Table 5.9. The reported
geometric error is |Ap, —p,|, where A is the estimated affine transformation and p,, is
the point in the kth image (k € {1, 2}). It can be seen that the methods obtained fairly
similar results, however, GC-RANSAC is slightly more accurate. It is marginally
slower due to the neighborhood computation. However, it is still faster than real
time.

Convergence from a Not-All-Inlier Sample. Table 5.8 reports the frequencies when
a “not-all-inlier” sample led to the correct model. For lines (L), it is computed us-
ing 1000 runs on each outlier (100, 500 and 1000) and noise level (from 0.0 up to 9.0
pixels). Thus 15000 runs were performed. A minimal sample is counted as a “not-
all-inlier” if it contains at least one point farther from the ground truth model than
the ground truth noise o.

For fundamental matrices (F), the frequencies of success from a “not-all-inlier”
sample are computed as the mean of 1000 runs on all pairs of the AdelaideRMF
dataset. In this dataset, all inliers are labeled manually, thus it is easy to check
whether a sample point is inlier or not.

Evaluation of the )\ setting. To evaluate the effect of the A parameter balancing
the spatial coherence term, we applied GC-RANSAC to all problems with varying
A. The evaluated values are: (i) A = 0, which turns off the spatial coherence term,
(i) A = 0.1, (iii)) A = 1, (iv) A = 10, and (v) A = 100. Fig. 5.10a shows the ratio of
the geometric errors for A # 0 and A = 0 (in percent). For all investigated non-zero
A values, the error is lower than for A = 0. Since A = 0.1 led to the most accurate
results on average, we chose this setting in the tests.

Evaluation of the criterion for the local optimization. The proposed criterion (Eq.
5.12) ensuring that local optimization is applied only to the most promising model
candidates is tested in this section. We applied GC-RANSAC to all problems com-
bined with the proposed and the standard approaches. The standard technique sets
an iteration limit (default value: 50) and the LO procedure is afterwards applied

Bhttp://mplab.sztaki.hu/remotesensing
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TABLE 5.9: Fundamental matrix estimation applied to kusvod2 (24 pairs), AdelaideRMF
(19 pairs) and Multi-H (4 pairs) datasets, homography estimation on homogr (16 pairs)
and EVD (15 pairs) datasets, essential matrix estimation on the strecha dataset (467
pairs), and affine transformation estimation on the SZTAKI Earth Observation bench-
mark (52 pairs). Thus the methods were tested on total on 597 image pairs. The datasets,
the problem (F/H/E/A), the number of the image pairs (#) and the reported properties
are shown in the first three columns. The next five report the results at 99% confidence
with a time limit set to 60 FPS, i.e. the run is interrupted after 1/60 secs (EP-RANSAC
is removed since it cannot be applied in real time). For the other columns, there was no
time limit but the confidence was set to 95%. Values are the means of 1000 runs. LO
is the number of local optimizations and the number of graph-cut runs are shown in
brackets. The geometric error (€, in pixels) of the estimated model w.r.t. the manually
selected inliers is written in each second row; the mean processing time (7, in millisec-
onds) and the required number of samples (S) are written in every 3th and 4th rows.
The geometric error is the Sampson distance for F and E, and the projection error for H

and A.
Approx. 60 FPS (or 99% confidence) Confidence 95%
RSC | LO | LOT | LO’ | GC RSC LO LO™ LO’ EP-RSC GC

ol O - 2 2 2] 13 - 1 1 1 - 203
§ S‘ﬂ; & 5.01 | 495 | 497 | 5.02 4.65 5.18 5.08 5.03 5.22 7.87 4.69
2| T 6.2 6.1 6.3 59 4.6 49 5.2 5.1 49 439.9 3.6
S 117 96 99 111 70 93 76 78 87 - 53

s|a | O] - 2 2 21 103 - 2 2 3 - 2 (4
5 ;t E 055 | 053 | 052 0.55 0.50 0.44 0.45 0.43 0.44 0.71 0.43
3w T 142 | 148 | 149 | 141 18.9 262.7 194.2 210.9 2371 | 21219 227.1
= S 124 113 113 122 116 1363 1126 1205 | 1305.00 - 1115
= |- |LO| - 1 1 1] 10) - 2 1 2 - 1(3)
ﬁ EIS E 035 ] 034 034 | 034 0.32 0.33 0.33 0.33 0.34 0.44 0.32
g [ T 103 | 11.5| 11.1 | 10.3 14.6 12.8 15.1 14.1 124 | 23718 36.0
S 83 76 76 82 74 107 89 90 100 - 78

w | LO - 2 2 21 2(2) - 4 4 4 - 3(6)

] 41 E 153 | 163 | 1.51 | 158 1.53 0.96 0.95 0.95 0.96 1.17 0.92
= o T | 168 | 183 | 18.0| 168 | 19.2 2473 | 2480 | 251.3 247.0 > 10* 249.9
S 320 298 301 318 301 4303 4203 4248 4291 - 4204

e LO - 2 2 21 1(3) - 2 2 2 - 1(4)
‘é" | & 053 053] 053| 053] 051 0.50 0.50 0.49 0.50 0.58 0.47
Slg| T 71| 104 9.8 7.1 7.6 17.1 10.1 9.9 85| 3339.7 7.9
S 193 175 175 189 159 450 212 214 226 - 165

s | = | LO - 1 1 1] 1(@1) - 7 7 7 - 7(7)
§ ;ﬁ‘i E || 11.81 | 12.34 | 12.07 | 12.12 11.6 3.03 2.95 2.94 2.87 3.32 2.83
B & T 116 | 173 | 172 | 172 | 173 || 35819 | 36385 | 36484 | 3570.0 > 10% | 3466.4
S 31 30 31 31 30 3654 | 3646 | 3634 3653 - 3651

«~ | LO - 1 1 1] 13 - 1 1 1 - 1(3)

% 4‘1 & 041 | 041 | 041 | 041 0.40 0.45 0.46 0.44 0.45 0.48 0.41
S§le| 7| 35| 32| 32| 32| 103 1.7 17 17 17| 47182 | 102
S 26 26 26 26 26 9 9 9 9 - 9
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FIGURE 5.10: (a) The effect of the A choice weighting the spatial term. The ratio of the
geometric error (in percentage) compared to the A = 0 case (no spatial coherence) for
each problem (L - lines, F — fundamental matrix, E — essential matrix, H — homography,
A - affine transformation). (b) The effect of replacing the iteration limit before the first
LO applied with the proposed criterion, i.e. the confidence radically increases. The
ratios (in percentage) of each property of the proposed and that of standard approaches.
(c) The breakdown of the processing times in percentage w.r.t. the total runtime. All
values were computed as the mean of all tests. Best viewed in color.
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to all models that are so far the best. Fig. 5.10b reports the ratio of each property
(processing time — dark blue, LO - light blue, and GC steps — yellow, geometric er-
ror — brown) of the proposed and standard approaches. The new criterion leads to
significant improvement in the processing time with no deterioration in accuracy.

Processing Time. Fig. 5.10c shows the breakdown of the processing times of GC-
RANSAC applied to each problem. The time demand of the neighborhood computa-
tion (dark blue) linearly depends on the point number. The light blue one is the time
demand of the sampling and model fitting step, the yellow and brown bars show
the model verification (support computation) and the proposed local optimization
step, respectively. The sampling and model fitting part dominates the process.

54 Summary

GC-RANSAC was presented. It is more geometrically accurate than state-of-the-art
methods. It runs in real-time for many problems at a speed approximately equal
to the less accurate alternatives. It is much simpler to implement in a reproducible
manner than any of the competitors (RANSAC’s with local optimization). Its local
optimization step is globally optimal for the so-far-the-best model parameters. We
also proposed a criterion for the application of the local optimization step. This
criterion leads to a significant improvement in processing time with no deterioration
in accuracy. GC-RANSAC can be easily inserted into USAC [11] and be combined
with its “bells and whistles” like PROSAC sampling, degeneracy testing and fast
evaluation with early termination.

5.5 Multi-H: Efficient Recovery of Tangent Planes in Stereo
Images

Understanding the structure of indoor and outdoor environments is important in
many applications of computer vision. Man-made objects commonly consist of pla-
nar regions, particularly in an urban environment or indoor scenes. Many algo-
rithms, for diverse problems, exploit the information captured by planes or planar
correspondences. Such problems include camera calibration [70]-[72], robot naviga-
tion [74], [87], augmented reality [163] and 3D reconstruction [68], [69].

This paper addresses the problem of accurate tangent plane estimation by parti-
tioning the feature correspondences satisfying the epipolar constraint according to
the similarity of their tangent planes. A plane-to-plane correspondence in two im-
ages is defined by a homography [43] which can be estimated in many ways. Meth-
ods based on point [43], line [43], conic [79], [80], local affine frame [30] or region [77]
correspondences have been proposed.

Several techniques are available for the estimation of multiple homographies.
The popular RANSAC paradigm has been extended to multiple plane fitting by se-
quential RANSAC [137], [138] and multiRANSAC [139]. However, the RANSAC
strategy suffers from the low inlier ratio of each individual homography. J-Linkage [83]
and the recently proposed T-Linkage [84] are based on the analysis of randomly se-
lected clusters in the preference space which is defined by the assignment costs of
data points to clusters. J-Linkage merges the initial clusters in the order of their Jac-
card distances i.e. the overlap between two sets. T-Linkage extends this approach to
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a continuous preference space and modifies the distance function between two clus-
ters to the Tanimoto distance. Both algorithms decide whether a plane is significant
on the basis of the number of the associated inliers.

The closest work is the PEARL algorithm of Boykov et al. [13]. In PEARL, the
multi-model fitting problem is cleanly formulated as optimization of a global energy
functional. The hypothesizes are initialized by stochastic sampling. The data term
of the energy functional captures the cost of a point to homography assignment.
A second term introduces spatial regularization reflecting an assumption that the
geometric models have non-overlapping spatial supports and that correspondences
which are close are more likely to belong to the same model. A third term penalizes
the number of the models.

Like PEARL, we formulate the problem as a search for energy minimizing label-
ing. The energy proposed here is similar: it consists of the same data and spatial
regularization terms. However, in the proposed algorithm, called Multi-H, the third
term of PEARL is omitted as we control the model complexity by a combination of
Mean-Shift [164] and a-expansion [140].

Multi-H benefits from a deterministic initialization which we show that together
with a repeated use of Mean-Shift leads to results superior to PEARL. The proposed
method exploits the result of Barath et al. [30] and estimates a homography from
a single correspondence and the related affinity. Another strong point is that hard
decisions whether a plane is significant or not are avoided since that depends on
the application field. Small planes are beneficial e.g. for reconstruction, however, we
introduce a significance criterion for the problem of dominant plane retrieval.

The contributions of the paper are: (1) the method for assigning point corre-
spondences to planes according to the similarity of their tangents that leads to high-
quality estimates of surface normals. Not deciding whether a plane is significant,
we benefit from both weakly and strongly supported planes. (2) It is shown that
the common stochastic sampling stage of multi-homography fitting algorithms can
be improved upon. The Multi-H partitioning significantly outperforms state-ofthe-
art multi-homography fitting techniques. (3) We introduce new, more challenging
image pairs for multi-homography estimation and make them publicly available to-
gether with the annotation’*.

5.5.1 Multiple Homography Estimation — Multi-H

Multi-H estimates tangent plane parameters at each point correspondence by as-
signing them to shared planes. Its only required input is an image pair. The output
of the algorithm is a set of homographies defining the tangent planes and a label for
each point correspondence associating it to a homography.

Point Correspondences with Local Affine Transformations. Several methods are
available for the estimation of a local affine transformation at a detected point pair.
We prefer to use affine-covariant feature detectors [57] since they provide point cor-
respondences and affinities at the same time. We use MODS!” [46] since it is sig-
nificantly faster than ASIFT [2]. MODS provides high quality local affine transfor-
mations as well as the epipolar geometry F. The output point correspondences are
consistent with fundamental matrix F. A different source of point correspondences
with local affinities can be used, but the transformations must be consistent with F
since Multi-H exploits this property.

Yhttp://web.eee.sztaki.hu/~dbarath/
% Available at http://cmp. felk.cvut.cz/wbs/
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Let us denote the 7th homogeneous point in kth image with p}; = [pzm pfﬁ’y 17,
i € [1,n], k € {1,2}, and the related local affinity with Aj. The transformation
between the infinitely close vicinities of the two points is the one transforming the
first affinity to the second as A‘A} = A} Thus A’ = AL(A%)~L. The elements
of A’ in row-major order are a';, at,, ab;, and a’,. Fig. 5.11 visualizes some local

FIGURE 5.11: Corresponding local affine transformations visualized by ellipses.

affine transformations using ellipses. To make the measured affinities as accurate as
possible, the EG-L,-Opt correction is applied [165].

Homography H; is calculated for every affine transformation A; and the corre-
sponding point pair by the Homography from Affine transformation and Funda-
mental matrix method (HAF) [30]. HAF estimates a homography from only one
affine correspondence if the fundamental matrix is given by solving a system of lin-
ear, inhomogeneous equations Cx = b with coefficient matrix

azﬁpi’x + plzx —e’ azﬁpé’y af

C— |“epr! £ PE e angp al (5.13)
oy’ Y e ! o
ajopy” +p5¥ —€¥  ahpy”  ah

x

where e = [e* ¢¥]T is the epipole on the second image. Vector b = [fa1  faa —
fi1 —fi2] is the inhomogeneous part of the four equations and x = [h3;  h32 has]®
is the vector of the unknown parameters. The optimal solution in the least squares
sense is given by x = C'b where CT is the Moore-Penrose pseudo-inverse of matrix
C. The homography matrix is finally calculated using its last row [30] as follows:
hlj = e“”hgj + fgj, hgj = Gyhgj + flj/ where j € {1,2} and fi,,l,m € {1,2,3}, are
elements of the fundamental matrix F.

Alternating Minimization. After the initialization described in the preceding sec-
tion, the set of homographies is improved by alternating three steps (see Alg. 9).

(1) Mean-Shift. Fig. 5.12 shows that after initialization some of the homographies es-
timated from a single correspondence coincide with a surface tangent plane (columns
one and two) and some do not (columns three and four). In each column of Fig. 5.12,
the correspondence initializing the homography is marked green, and its e-inliers
are in red, with threshold € = 3.0 pixels. The tangent planes are visualized by blue
quadrang]es.

We assume that tangent plane homographies are shared by a number of points
and their parameters emerge as modes in the homography space. Since we do not
know the number of tangent planes in the scene, the mode-seeking Mean-Shift [164] al-
gorithm is adopted. The projection of the ith homography in the constructed 6D
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FIGURE 5.12: The images (top, bottom) of the johnsona pair. Blue shaded quadrangles

visualise homographies coinciding (columns 1 and 2) and not coinciding (3 and 4) with

a surface tangent plane. The correspondence initializing the homography is marked

green. The red points are inliers obtained by thresholding the re-projection error at 3.0
pixels.

Algorithm 9 The Multi-H Algorithm.
Input: Iy, I, —images; P, A, F' := MODS(14, I5) [46]
P - point correspondences; A — affine transformations; F' — fundamental
matrix
Output: H — obtained homographies; L — obtained labeling

1: HO :=HAF(P, A, F) [30] > Initialization with point-wise homographies
2: 3:=0;
3: repeat > Alternating Minimization
4: =1+ 1;
5: H? := MeanShift(H#~!) > Default e = 2.7
6:  L':= a-expansion(P, H") > Default A = 0.5, v = 0.005
7. H':= LSQHomographyRefinement(P, A, L', F)
8: until Convergence pif H =HITL AL = L7}
9. H:=H,;L:=L"
homography space is
vi = wi”” wi’y wy® whY wé’x w;’y] , (5.14)
where
i HDO 0 T E 0 T D 1T
his hig + s hg + i

The denominator of each w' is the projective depth of the transformed point in the
numerator. Each vector v¢ determines a homography which can be recovered from
threepoints [0 0 1]T,[1 0 1]5,[0 1 1] and their projections if the fundamen-
tal matrix is known [30], [43]. Even though there are several possible representations
for a homography (e.g. using its elements, projecting four points, etc.), we prefer to
use a low-dimensional one — the processing time of Mean-Shift highly depends on
the dimension of the problem. Since each coordinate pair [v} v} 4], k € {1,3,5}, is
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a given point projected by H' the distance function d is chosen as the mean Eucle-
dian distance between the three coordinate pairs where v}, is the kth coordinate of
vector v*. The distance between the ith and jth feature vectors is defined as

i iy L i i j j
d(v',v’) = 3 Z H[UQ(k—l)-H U2(k—1)+2]T - [U%(k_l)_i,-l U%(k_1)+2]T||2-
k=1
(2) The a-expansion [140] step minimizes the following energy:

B(L) = %Ed(L) +AES(L), (5.15)

where L is the current labeling, E4(L) and Es(L) the data and smoothness terms; A
controls their balance. The data term is defined as

N .

: le pz

IR T (5.16)
= 31 ! +H32p1 + Hss

where 7! is the homography associated with label /; € L of the ith correspondence.
The second term, E, reflects the assumption that neighboring points are more likely
to belong to the same homography. E; is equal to the number of neighboring points
that are labeled differently:

N N
:ZZ Al # 15] (5.17)

where N is the number of correspondences, the Iverson bracket [.] is equal to one
if the condition inside holds and zero otherwise, and the elements of the adjacency
matrix A;; are equal to 1 if correspondences ith and jth are spatial neighbors, 0
otherwise. The correspondences are considered to be neighbors if their distance in a
4D concatenated coordinate space — the vector associated with a correspondence is
p¥ p! p% py|T —isbelow v, a control parameter. Matrix A is calculated efficiently
using FLANN, the Fast Library for Approximate Nearest Neighbors [166].

The energy cannot increase in this step due to the nature of the a-expansion

algorithm. A point is assigned to no plane if its distance from the closest one is
greater than 3¢ which is an empirically set threshold.
(3) The Least-Squares Homography Refinement runs the HAF method [30] on the
correspondences associated with each homography by the current labeling. The
number of the homographies is unchanged. The energy decreases or remains the
same since Ly is the sum of the re-projection errors which are minimized. FEs is
unchanged since the labeling does not change.

Convergence is reached when both the number of the clusters and the energy
remain unchanged in two iterations. As the first stage does not increase the number
of clusters, the other stages decrease the energy, and the set of labeling is finite,
convergence is ensured. In the reported experiments, Alg. 9 converged no later than
after eight iterations.

5.5.2 Experimental Results

Comparison with Multi-homography Fitting Techniques. In this section, Multi-
H is tested on the problem of significant plane retrieval. and it outperforms the
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TABLE 5.10: Misclassification error (%) for the two-view plane segmentation. The se-
lected image pairs are a subset — the same as used in [84] — of the 19 pairs of Adelai-
deRMEF dataset. The number of the ground truth planes is denoted with R.

R || PEARL QP-MF FLOSS ARJMC SA-RCM J-Lnkg T-Lnkg Multi-H

johnsonna 4 4.02 18.50 4.16 6.48 5.90 5.07 4.02 241
johnsonnb 7 18.18 2465 1818 21.49 1795 1833 18.17 4.46
ladysymon 2 5.49 18.14 5.91 5.91 7.17 9.25 5.06 0.00
neem 3 5.39 31.95 5.39 8.81 5.81 3.73 3.73 0.00
oldclassicswing | 2 1.58 13.72 1.85 1.85 2.11 0.27 0.26 0.00
sene 2 0.80 14.00 0.80 0.80 0.80 0.84 0.40 0.00

mean 591 20.16 6.05 7.56 6.62 6.25 5.30 1.19
median 471 18.32 4.78 6.20 5.86 4.40 3.87 0.00

TABLE 5.11: Two-view plane segmentation. Mean and median misclassification error
(%) on the 19 image pairs of the AdelaideRMF dataset.

J-Lnkg T-Lnkg RPA SA-RCM Grdy-RansaCov ILP-RansaCov Multi-H
avg 25.50 2466 17.20 28.30 26.85 12.91 4.40
med || 2448 2453 17.78 29.40 28.77 12.34 2.41

state-ofthe-art multi-homography fitting techniques.

Determination of significant planes. To determine whether a detected plane is
or is not significant without strict restrictions on the minimum number of inliers,
the following algorithm is introduced. (1) First, planes with less than four inliers
are removed. (2) The homographies are re-computed using the standard normal-
ized 4-point algorithm [43] followed by a numerical refinement stage minimizing
the re-projection error by Levenberg-Marquardt optimization. (3) The compatibility
constraint [43] for a homography and a fundamental matrix: H'F + FTH = 0 is
imposed by removing H; for which ||[H]F + FTH;||r > 0. After extensive experi-
mentation we set 6 = 1.0.

Multi-H is tested as in [84] on the AdelaideRMF dataset. For each image pair in
the dataset, a set of dominant planes and point pairs on them are provided. How-
ever, affine transformations for the point pairs are not available. Thus as many cor-
respondences and affinities as possible are obtained by MODS [46]. Then the clos-
est match for every annotated AdelaideRMF correspondence is found among the
MODS correspondences. These correspondences with the local affine transforma-
tions are the input of Multi-H.

The misclassification error (ME) is calculated as follows. First, the mapping be-
tween the ground truth gt € Lg and Multi-H [ € L labels is established. We use
an iterative method, always assigning the Multi-H output homography with the
highest set overlap of correspondences. The assigned Multi-H homography and
ground truth one maximizing the overlap are then removed from further considera-
tion. Note that if the assignment is not optimal, the reported misclassification errors
of Multi-H are over-estimated. ME is the ratio of the number of different labels
Yoy [[lét # 1] and the number of ground truth correspondences n.

Multi-H is compared with T-Linkage [84], ARJMC [167], PEaRL [13], QP-MF [168],
FLoSS [169], J-Linkage [83] and SA-RCM [170] in Experiment 1 (see Table 5.10). Ev-
ery algorithm, including Multi-H, has been tuned separately on each image pair.
We prefer reporting results for a setting fixed for the whole dataset, and we do that
at the end of this section, but to allow comparison with the literature we followed
the per-image-parameter-setting methodology. Table 5.10 shows that Multi-H ob-
tains the lowest mean and median misclassification errors on the six test image pairs
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FIGURE 5.13: Resulting partitioning of Multi-H on the AdelaideRMF dataset. Planes are

denoted by colour. There are a few misclassified points (on the top-left and top-middle

images around the edges). They are denoted by small, filled, black circles. Best viewed
in colour.

evaluated in the literature [84]. Fig. 5.13 shows the Multi-H points color-coded by
the homography they were assigned to.

Table 5.11 shows the mean and median misclassification errors on all 19 image
pairs of the AdelaideRMF dataset. The competitor methods are T-Linkage [84], ]J-
Linkage [83], RPA [141], SA-RCM [170], Greedy-RansaCov [14] and ILP-RansaCov
[14]. Multi-H significantly outperforms all published methods. Note the signifi-
cant difference in the mean and median misclassification rates obtained on the six
selected image, which are commonly published (Table 5.10), and on the full dataset.

Even though this dataset is the most frequently used one in the multi-plane fit-
ting literature, it consists of easy scenes where the planes are perpendicular or far
from each other. In order to test the accuracy of Multi-H, we created a more chal-
lenging dataset. Examples of the new images are visualized in Fig. 5.14. On these
images, point correspondences are detected by MODS [46] and each is manually an-
notated to the containing plane. Finally, outliers, i.e. non-corresponding point pairs,
are added to the data. For every image pair, the first image is the ground truth and
the second one is the obtained planar partitioning. Outliers are visualised by black
dots on the ground truth images. Pair 5.14(a) is from the well-known graffiti test
sequence'®. Two slightly different planes present in these images. The lower plane
is closer to the camera than the upper one, however, the difference is very small.
Even so, Multi-H accurately distinguishes the two planes and achieves a low mis-
classification error of 1.19%. Image pairs 5.14(b) and 5.14(c) are a cabinet with books
and a staircase viewed from above. The last two images (5.14(d)) visualize a room
with some boxes and planar-like objects. These tests are more challenging than the
ones containing buildings since the observed planar regions are very small and their
orientations are in many cases similar, see e.g. the books in glasscasea.

Proposed general configuration. For practical point of view, it is desirable that
a single setting of parameters of the method covers most common cases. Through
extensive experimentation, we found that A = 0.5, ¢ = 2.7, and v = 0.005 are a robust
choice. Table 5.12 shows the misclassification error on the AdalaideRMF dataset

16 Available at http: //www.robots.ox.ac.uk/~vgg/research/affine/
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(c) stairs (M E = 8.74%) (d) boxesandbooks (ME= 3.14%)

FIGURE 5.14: Four image pairs of the new dataset. Points coloured according to tangent
planes, manual annotation (left) and Multi-H assignment (right). ME is the misclassifi-
cation error.

johnsa johnsb ladysymon neem old sene | mean median
Multi-H 9.33 10.14 4.49 200 1.79 0.00 | 4.79 3.74
T-Lnkg 34.28 24.04 24.67 25.65 20.66 7.63 | 22.82 24.36
SA-RCM | 36.73 16.46 39.50 4145 21.30 20.20 | 29.27 29.02
RPA 10.76 26.76 24.67 19.86 2525 0.42 | 17.95 22.27

TABLE 5.12: Misclassification error (%) with a fixed parameter setup, average over 5
runs. The following abbreviations are used: johnsonna (johnsa), johnsonnb (johnsb),
oldclassicswing (old).
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FIGURE 5.15: Correspondence clustering into tangent planes for frames 1, 2 of the
fountain-P11 set. Planes denoted by colour, estimated surface normals visualized by
white line segments.

Frames 1-2 3-5 1-5 6-8 5-9

Affine Detector | 35.7 | 32.7 2491203 19.01 158 2251186 2001154
EG-L,-Optimal | 35.5 | 325 2311198 16.7 1139 1991166 178 | 144
Multi-H 1441 94 90| 75 70! 58 88| 73 711 5.7

TABLE 5.13: Mean and median errors (in degrees) of estimated normals for selected
image pairs.

(average of 5 runs). The results are significantly worse than those of the separately
tuned ones (see Table 5.10), but much better than the performance of the competitor
algorithms'” with a fixed set-up.

Evaluation of Surface Normal Accuracy. In this section, the accuracy of planes es-
timated by Multi-H is compared with the point-wise estimates of the affine-covariant
detector. All planes returned by Multi-H are used, the significance constraint which
was used in the previous section is not applied. The accuracy was assessed on the
fountain-P11 dataset [63] which includes 11 images with resolution 3072 x 2048, pro-
jection and calibration camera matrices and reconstructed point clouds with surface
normals. Point correspondences of MODS [46] between selected image pairs were
obtained. On average, 920 correspondences were found.

Multi-H partitions correspondences on the basis of their tangent planes. The
partitioning is visualized in Fig. 5.15. A single homography is fitted using the corre-
spondences in the same tangent plane cluster. The normals at the correspondences
are calculated from the homography as the camera parameters are known. Table 5.13
(row 3, Multi-H) shows the mean and median angular errors of the surface normals
calculated from the homographies w.r.t. ground truth data. The surface normals de-
termined by the homographies are significantly more accurate then the estimates
from the initial local affine transformations output by the detector (Table 5.13, first
row). Normals estimated after the EG-L,-Optimal procedure [165], that improves
the local affinities using constraints provided by the fundamental matrix, are signif-
icantly less accurate too (Table 5.13, second row).

Note that the projection matrices are used only for the evaluation of the results
and not for the estimation of the tangent planes.

Processing Time and Implementation Details. The speed of the Multi-H proce-
dure was measured on two sets consisting of 100 and 500 correspondences. Since

!7Experimental results are copied from [141]
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FIGURE 5.16: (a) Processing time (in milliseconds) of Multi-H applied to different image

pairs. The vertical axis at each column shows the resolution of the images and the

correspondence number. (b) The processing time (in milliseconds) of iterations 1-8 of
the alternating minimization on the hartley pair.

a randomized version of Mean-Shift was used, the algorithm ran 100 times. The
mean number of iterations of Algorithm 9 was approx. 6 in both cases. The average
processing times for the 100 and 500 correspondences were 0.04 and 0.80 sec. on a
desktop PC with Intel Core i5-4690 CPU, 3.50 GHz using 4 cores.

Each column of Fig. 5.16(a) shows the processing time (in milliseconds) for an
image pair. The parts of each bar visualize the time of the different algorithmic steps.
The data shows that Multi-H has negligible time demand compared to the feature
detection process (MODS). The bars associated with the calculation of the adjacency
matrix and point-wise homographies cannot be seen since they require approx. 4 —6
milliseconds.

Fig. 5.16(b) presents the processing time of the alternating minimization. It sig-
nificantly drops after the first iteration, then it is constant-like. The drop is caused
by the Mean-Shift that reduces the number of homographies which speeds-up the
a-expansion step.

Multi-H is implemented in C++. The GCOptimization'® code was used for a-
expansion. A fast Mean-Shift implementation was downloaded from the web'’.

5.5.3 Summary

The Multi-H approach for estimation of tangent planes in image pairs by partition-
ing feature correspondences was proposed. The method is accurate, outperforming
state-of-the-art multi-homography fitting techniques for both fixed and per-image
parameter setting. Experiments showed that the standard datasets are relatively
easy and we therefore augmented the data with several challenging image pairs
which we annotated.

In most applications, Multi-H will run significantly faster than the affine-covariant
detectors providing the input. It is real-time on a standard CPU if the number of
correspondences is below approx. 300. A GPU implementation of a-expansion [171]
will be real-time capable for significantly larger problems.

18 Available at http://vision.csd.uwo.ca/code/
9 Available at http://scikit-learn.org/stable/modules/clustering.html#
mean-shift
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FIGURE 5.17: Multi-class multi-instance fitting examples. Results on simultaneous
plane and cylinder (top left), line and circle fitting (top right), motion (bottom left) and
plane segmentation (bottom right).

5.6 Multi-Class Model Fitting by Energy Minimization and
Mode-Seeking

In multi-class fitting, the input data is interpreted as a mixture of noisy observations
originating from multiple instances of multiple model classes, e.g. k lines and [ cir-
cles in 2D edge maps, k planes and [ cylinders in 3D data, multiple homographies or
fundamental matrices from correspondences from a non-rigid scene (see Fig. 5.17).
Robustness is achieved by considering assignment to an outlier class.

Multi-model fitting has been studied since the early sixties, the Hough-transform
[12], [172] being the first popular method for extracting multiple instances of a single
class [173]-[176]. A widely used approach for finding a single instance is RANSAC [1]
which alternates two steps: the generation of instance hypotheses and their valida-
tion. However, extending RANSAC to the multi-instance case has had limited suc-
cess. Sequential RANSAC detects instance one after another in a greedy manner,
removing their inliers [137], [138]. In this approach, data points are assigned to the
first instance, typically the one with the largest support for which they cannot be
deemed outliers, rather than to the best instance. MultiRANSAC [139] forms com-
pound hypothesis about n instances. Besides requiring the number n of the instances
to be known a priori, the approach increases the size of the minimum sample and
thus the number of hypotheses that have to be validated.

Most recent approaches [13], [14], [83], [84], [177] focus on the single class case:
finding multiple instances of the same model class. A popular group of meth-
ods [13], [15], [27], [170], [178] adopts a two step process: initialization by RANSAC-
like instance generation followed by a point-to-instance assignment optimization by
energy minimization using graph labeling techniques [16]. Another group of methods
uses preference analysis, introduced by RHA [17], which is based on the distribution
of residuals of individual data points with respect to the instances [83], [84], [177].
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The multiple instance multiple class case considers fitting of instances that are not
necessarily of the same class. This generalization has received much less attention
than the single-class case. To our knowledge, the last significant contribution is that
of Stricker and Leonardis [18] who search for multiple parametric models simulta-
neously by minimizing description length using Tabu search.

The proposed Multi-X method finds multiple instances of multiple model classes
drawing on progress in energy minimization extended with a new move in the la-
bel space: replacement of a set of labels with the corresponding density mode in
the model parameter domain. Mode seeking significantly reduces the label space,
thus speeding up the energy minimization, and it overcomes the problem of mul-
tiple instances with similar parameters, a weakness of state-of-the-art single-class
approaches. The assignment of data to instances of different model classes is han-
dled by the introduction of class-specific distance functions. Multi-X can also be seen
as an extension or generalization of the Hough transform: (i) it finds modes of the
parameter space density without creating an accumulator and locating local max-
ima there, which is prohibitive in high dimensional spaces, (ii) it handles multiple
classes — running Hough transform for each model type in parallel or sequentially
cannot easily handle competition for data points, and (iii) the ability to model spatial
coherence of inliers and to consider higher-order geometric priors is added.

Most recent papers [14], [84], [179] report results tuned for each test case sep-
arately. The results are impressive, but input-specific tuning, i.e. semi-automatic
operation with multiple passes, severely restricts possible applications. We propose
an adaptive parameter setting strategy within the algorithm, allowing the user to run
Multi-X as a black box on a range of problems with no need to set any parameters.
Considering that outliers may form structures in the input, as a post-processing step,
a cross-validation-based technique removes insignificant instances.

The contributions of the paper are: (i) A general formulation is proposed for
multi-class multi-instance model fitting which, to the best of our knowledge, has
not been investigated before. (ii) The commonly used energy minimizing technique,
introduced by PEARL [13], is extended with a new move in the label space: replac-
ing a set of labels with the corresponding density mode in the model parameter do-
main. Benefiting from this move, the minimization is speeded up, terminates with
lower energy and the estimated model parameters are more accurate. (iii) The pro-
posed pipeline combines state-of-the-art techniques, such as energy-minimization,
median-based mode-seeking, cross-validation, to achieve results superior to the re-
cent multi-model fitting algorithms both in terms of accuracy and processing time.
Proposing automatic setting for the key optimization parameters, the method is ap-
plicable to various real world problems.

5.6.1 Multi-Class Formulation

Before presenting the general definition, let us consider a few examples of multi-
instance fitting: to find a pair of line instances hi, ho € H; interpreting a set of 2D
points P C R2. Line class H, is the space of lines H; = {(0;, ¢1,7),0 = [a ¢]'}
equipped with a distance function ¢;(6;, p) = | cos(a)z+sin(a)y+c| (p = [z y]T € P)
and a function 7(p1, ..., pm,) = 0; for estimating 6; from m; € N data points. An-
other simple example is the fitting n circle instances hy, ha,-- - , hy, € H, to the same
data. The circle class H. = {(0c, ¢¢,7c), 0 = [ca ¢y r]T} is the space of circles,
Gc(bc,p) = |1 — /(e — )% + (cy — y)?| is a distance function and 7.(p1, ..., pm.) = 6.
is an estimator. Multi-line fitting is the problem of finding multiple line instances
{h1,ha,...} C H;, while the multi-class case is extracting a subset H C Hy, where
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Hy =HiUH,UH U---. The set Hy is the space of all classes, e.g. line and circle. The
formulation includes the outlier class H, = {(0,, ¢o, 7o), 6, = (1} where each instance
has constant but possibly different distance to all points ¢,(6,,p) = k, k € R* and
To(P1, .., Pm,) = 0. Note that considering multiple outlier classes allows interpreta-
tion of outliers askk originating from different sources.

Definition 2 (Multi-Class Model). The multi-class model is a space Hy = |J Hi, where
Hi = {(0:,65,7) | di € N,§; € R ¢, € P xRYE — R, 1y : P* — R%} is a single
class, P is the set of data points, d; is the dimension of parameter vector 0;, ¢; is the distance
function and T; is the estimator of the ith class.

The objective of multi-instance multi-class model fitting is to determine a set of in-
stances H C Hy and labeling L € P — H assigning each point p € P to an instance
h € H minimizing energy E. We adopt energy

E(L) = Eg(L) + wyE,(L) + weE.(L) (5.18)

to measure the quality of the fitting, where w, and w. are weights balancing the
different terms described bellow, and Ey, E. and E, are the data, complexity terms,
and the one considering geometric priors, e.g. spatial coherence or perpendicularity,
respectively.
Data term E; : (P — #H) — R is defined in most energy minimization approaches
as

Ed<L) = Z ¢L(p) (HL(p)7p>7 (5.19)

peEP

penalizing inaccuracies induced by the point-to-instance assignment, where ¢, is
the distance function of i)

Geometric prior term F, considers spatial coherence of the data points, adopted
from [13], and possibly higher order geometric terms [15], e.g. perpendicularity of
instances. The term favoring spatial coherence, i.e. close points more likely belong
to the same instance, is defined as

Eg(L): (P—H)>R= > wylL(p) # L(g)], (5.20)

(P.9)EN

where N are the edges of a predefined neighborhood-graph, the Iverson bracket [.]
equals to one if the condition inside holds and zero otherwise, and w,, is a pairwise
weighting term. In this paper, w,, equals to one. For problems, where it is required
to consider higher-order geometric terms, e.g. to find three perpendicular planes, £,
can be replaced with the energy term proposed in [15].

A regularization of the number of instances is proposed by Delong et al. [180] as
a label count penalty E.(L) : (P — H) — R = |L(P)|, where L(P) is the set of
distinct labels of labeling function L. To handle multi-class models which might
have different costs on the basis of the model class, we thus propose the following
definition:

Definition 3 (Weighted Multi-Class Model). The weighted multi-class model is a space
,}/'Zv = U,}:er where 7/'21 = {(0i7¢i77i7¢i) ’ d; € N, 0; € Rdi,¢i e P x R — R,7;: P* —
R 4, € R} is a weighted class, P is the set of data points, d; is the dimension of parameter
vector 0;, ¢; is the distance function, 7; is the estimator, and 1), is the weight of the ith class.
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The term controlling the number of instances is

E.(L)= Y v, (5.21)

leL(P)

instead of E., where 1 is the weight of the weighted multi-class model referred by

label I.
Combining terms Egs. 5.19, 5.20, 5.21 leads to overall energy E(L) = E4L) +

~

wyEy(L) + weE(L).

5.6.2 Replacing Label Sets

For the optimization of the previously described energy, we build on and extend
the PEARL algorithm [13]. PEARL generates a set of initial instances applying a
RANSAC-like randomized sampling technique, then alternates two steps until con-
vergence:

(1) Application of a-expansion [140] to obtain labeling L minimizing overall energy

~

FE w.r.t. the current instance set.

(2) Re-estimation of the parameter vector 6 of each model instance in H w.r.t. labeling
L.

In the PEARL formulation, the only way for a label to be removed, i.e. for an instance
to be discarded, is to assign it to no data points. Experiments show that (i) this
removal process is often unable to delete instances having similar parameters, (ii)
and makes the estimation sensitive to the choice of label cost w.. We thus propose a
new move in the label space: replacing a set of labels with the density mode in the
model parameter domain.

Multi-model fitting techniques based on energy-minimization usually generate
a high number of instances H C Hy randomly as a first step [13], [15] (|H| > [Hreall,
where ¢, is the ground truth instance set). Therefore, the presence of many sim-
ilar instances is typical. We assume, and experimentally validate, that many points
supporting the sought instances in e, are often assigned in the initialization to a
number of instances in # with similar parameters. The cluster around the ground
truth instances in the model parameter domain can be replaced with the modes of
the density (see Fig. 5.18).

Given a mode-seeking function © : Hy, — HJ, e.g. Mean-Shift [164], which ob-
tains the density modes of input instance set #; in the ith iteration. The proposed

move is as
i+1 =

i (5.22)
H; otherwise,

where L; is the labeling in the ith iteration and Lg(y,) is the optimal labeling which
minimizes the energy w.r.t. to instance set ©(#;). It can be easily seen, that Eq. 5.22
does not break the convergence since it replaces the instances, i.e. the labels, if and
only if the energy does not increase. Note that clusters with cardinality one — modes
supported by a single instance — can be considered as outliers and removed. This
step reduces the label space and speeds up the process.
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FIGURE 5.18: (Left) Three lines each generating 100 points with zero-mean Gaussian

noise added, plus 50 outliers. (Right) 1000 line instances generated from random point

pairs, the ground truth instance parameters (red dots) and the modes (green) provided

by Mean-Shift shown in the model parameter domain: « angle — vertical, offset — hori-
zontal axis.

5.6.3 Multi-X

The proposed approach, called Multi-X, combining PEARL, multi-class models and
the proposed label replacement move, is summarized in Alg. 10. Next, each step is
described.

Algorithm 10 Multi-X
Input: P — data points
Output: H* —model instances, L* — labeling

1: Hj := InstanceGeneration(P); i := 1;

2: repeat

3: H; := ModeSeeking(H;_1); > by Median-Shift
4: L; := Labeling(H;, P); > by a-expansion
5: H; := ModelFitting(H;, L;, P); > by Weiszfeld
6: 1:=1+1;

7: until !Convergence(H;, L;)

8 H*:=H;, {,L*:=L; 4

9: H*, L* := ModelValidation(H*, L*) > Alg. 11

1. Instance generation step generates a set of initial instances before the alter-
nating optimization is applied. Reflecting the assumption that the data points are
spatially coherent, we use the guided sampling of NAPSAC [153]. This approach
first selects a random point, then the remaining ones are chosen from the neigh-
borhood of the selected point. The same neighborhood is used as for the spatial
coherence term in the a-expansion. Note that this step can easily be replaced by
e.g. PROSAC [116] for problems where the spatial coherence does not hold or favors
degenerate estimates, e.g. in fundamental matrix estimation.

2. Mode-Seeking is applied in the model parameter domain. Suppose that a set
of instances H is given. Since the number of instances in the solution — the modes
in the parameter domain — is unknown, a suitable choice for mode-seeking is the
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Mean-Shift algorithm [164] or one of its variants. In preliminary experiments, the
most robust choice was the Median-Shift [128] using Weiszfeld- [130] or Tukey-
medians [129]. There was no significant difference, but Tukey-median was slightly
faster to compute. In contrast to Mean-Shift, it does not generate new elements in
the vector space since it always return an element of the input set. With the Tukey-
medians as modes, it is more robust than Mean-Shift [128]. However, we replaced
Locality Sensitive Hashing [181] with Fast Approximated Nearest Neighbors [147]
to achieve higher speed.

Reflecting the fact that a general instance-to-instance distance is needed, we rep-
resent instances by point sets, e.g. a line by two points and a homography by four
correspondences, and define the instance-to-instance distance as the Hausdorff dis-
tance [182] of the point sets. Even though it yields slightly more parameters than the
minimal representation, thus making Median-Shift a bit slower, it is always available
as it is used to define spatial neighborhood of points. Another motivation for rep-
resenting by points is the fact that having a non-homogeneous representation, e.g. a
line described by angle and offset, leads to anisotropic distance functions along the
axes, thus complicating the distance calculation in the mode-seeking.

There are many point sets defining an instance and a canonical point set repre-
sentation is needed. For lines, the nearest point to the origin is used and a point
on the line at a fixed distance from it. For a homography H, the four points are
H[0,0,1]T, H[1,0,1]T, H[0,1,1]T,and H[1, 1, 1]T. The matching step is excluded from
the Hausdorff distance, thus speeding up the distance calculation significantly.?’

The application of Median-Shift ©,.4 never increases the number of instances
|Hil: |Omed(Hi)| < |Hi|. The equality is achieved if and only if the distance between
every instance pair is greater than the bandwidth. Note that for each distinct model
class, Median-Shift has to be applied separately. According to our experience, apply-
ing this label replacement move in the first iteration does not make the estimation
less accurate but speeds it up significantly even if the energy slightly increases.

3. Labeling assigns points to model instances obtained in the previous step. A
suitable choice for such task is a-expansion [140], since it handles an arbitrary num-
ber of labels. Given H; and an initial labeling L;_; in the ith iteration, labeling L;
is estimated using a-expansion minimizing energy E. Note that Ly is determined
by a-expansion in the first step. The number of the model instances |H;| is fixed
during this step and the energy must decreases: E (L, Hi) < E (Li—1,H;). To reduce
the sensitivity on the outlier threshold (as it was shown for the single-instance case
in [156]), the distance function of each class is included into a Gaussian-kernel.

4. Model Fitting re-estimates the instance parameters w.r.t. the assigned points.
The obtained instance set H; is re-fitted using the labeling provided by a-expansion.
The number of the model instances |#;| is constant. L, fitting is an appropriate
choice, since combined with the labeling step, it can be considered as truncated L,
norm.

The overall energy E can only decrease or stay constant during this step since it
consists of three terms: (1) E; — the sum of the assignment costs minimized, (2) E, —
a function of the labeling L;, fixed in this step and (3) E. - which depends on |H;| so
Ec remains the same. Thus

E(Li,Hiv1) < E(Li, H;). (5.23)

*Details on the choice of model representation are provided in the supplementary material.
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5. Model Validation considers that a group of outliers may form spatially coherent
structures in the data. We propose a post-processing step to remove statistically
insignificant models using cross-validation. The algorithm, summarized in Alg. 11,
selects aminimalsubsett times from the inlier points /. In each iteration, an instance
is estimated from the selected points and its distance to each point is computed.
The original instance is considered stable if the mean of the distances is lower than
threshold . Note that v is the outlier threshold used in the previous sections.

Algorithm 11 Model Validation.
Input: I —inlier points, ¢ — trial number,
~ — outlier threshold > default t = 100
Output: R € {true, false} — response

~

: D=0

: fori:=1totdo

MSS := SelectMinimalSubset(7)

H := ModelEstimation(MSS)

D:=D+ MeanDistanceFromPoints(H, I) /t

:R:=1A?<’y

Automatic parameter setting is crucial for Multi-X to be applicable to various real
world tasks without requiring the user to set most of the parameters manually. To
avoid manual bandwidth selection for mode-seeking, we adopted the automatic
procedure proposed in [183] which sets the bandwidth ¢; of the ith instance to the
distance of the instance and its kth neighbor. Thus each instance has its own band-
width set automatically on the basis of the input.

Label cost w, is set automatically using the approach proposed in [15] as follows:
we = mlog(|P])/hmax, where m is the size of the minimal sample to estimate the
current model, |P| is the point number and hmax is the maximum expected number
of instances in the data. Note that this cost is not required to be high since mode-
seeking successfully suppresses instances having similar parameters. The objective
of introducing a label cost is to remove model instances with weak supports. In
practice, this means that the choice of ~mayx is not restrictive.

Experiments show that the choice of the number of initial instances does not
affect the outcome of Multi-X significantly. In our experiments, the number of in-
stances generated was twice the number of the input points.

Spatial coherence weight w, value 0.3 performed well in the experiments. The
common problem-specific outlier thresholds which led to the most accurate results
was: homographies (2.4 pixels), fundamental matrices (2.0 pixels), lines and circles
(2.0 pixels), rigid motions (2.5), planes and cylinders (10 cm).

5.6.4 Experimental Results

First we compare Multi-X with PEARL [13] combined with the label cost of Delong
et al. [180]. Then the performance of Multi-X applied to the following Computer
Vision problems is reported: line and circle fitting, 3D plane and cylinder fitting
to LIDAR point clouds, multiple homography fitting, two-view and video motion
segmentation.
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@) ) ®)

FP FN | FP FN | FP EN
PEARL [13] 1 0 3 0 5 3
T-Linkage [84] || 0 1 1 3 0 6
RPA [177] 0 1 0 2 0 5
Multi-X 0 0 0 0 0 1

TABLE 5.14: The number of false positive (FP) and false negative (FN) instances for
simultaneous line and circle fitting.

Comparison of PEARL and Multi-X. In a test designed to show the effect of the
proposed label move, model validation was not applied and both methods used
the same algorithmic components described in the previous section. A synthetic
environment consisting of three 2D lines, each sampled at 100 random locations,
was created. Then 200 outliers, i.e. random points, were added.

Fig. 5.19 shows the probability of returning an instance number for Multi-X (top-
left) and PEARL (bottom-left). The numbers next to the vertical axis are the number
of returned instances. The curve on their right shows the probability (¢ [0, 1]) of
returning them. For instance, the red curve for PEARL on the right of number 3
is close to the 0.1 probability, while for Multi-X, it is approximately 0.6. Therefore,
Multi-X more likely returns the desired number of instances. The processing times
(top-right), and convergence energies (bottom-right) are also reported. Values are
plotted as the function of the initially generated instance number (horizontal axis;
ratio w.r.t. to the input point number). The standard deviation of the zero-mean
Gaussian-noise added to the point coordinates is 20 pixels. Reflecting the fact that
the noise o is usually not known in real applications, we set the outlier threshold to
6.0 pixels. The maximum model number of the label cost was set to the ground truth
value, hmax = 3, to demonstrate that suppressing instances exclusively with label
cost penalties is not sufficient even with the proper parameters. It can be seen that
Multi-X more likely returns the ground truth number of models, both its processing
time and convergence energy are superior to that of PEARL.

For Fig. 5.20, the number of the generated instances was set to twice the point
number, the threshold was set to 3 pixels. Each reported property is plotted as the
function of the noise o added to the point coordinates. The same trend can be seen as
in Fig. 5.19: Multi-X is less sensitive to the noise than PEARL. It more often returns
the desired instances, its processing time and convergence energy are lower.

Simultaneous Line and Circle Fitting is evaluated on 2D edges of banknotes and
coins. Edges are detected by Canny edge detector and assigned to circles and lines
manually to create a ground truth segmentation.?!

Each method started with the same number of initial model instances: twice
the data point (e.g. edge) number. The evaluated methods are PEARL [13], [178],
T-Linkage [84]%> and RPA [177]* since they can be considered as the state-of-the-
art and their implementations are available. PEARL and Multi-X fits circles and
lines simultaneously, while T-Linkage and RPA sequentially. Table 5.14 reports the
number of false negative and false positive models. Multi-X achieved the lowest
error for all test cases.

?!Submitted as supplementary material.
2 nttp://www.diegm.uniud.it/fusiello/demo/j1k/
B http://www.diegm.uniud.it/fusiello/demo/rpa/
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FIGURE 5.19: Increasing instance number. Comparison of PEARL and Multi-X. Three ran-

dom lines sampled at 100 locations, plus 200 outliers. Parameters of both methods are:

hmax = 3, and the outlier threshold is (a) 6 and (b) 3 pixels. Zero-mean Gaussian noise

with ¢ = 20 pixels added to the point coordinates. (Left) the probability of returning 0,

..., 7 instances (vertical axis) for PEARL (top) and Multi-X (bottom) plotted as the func-

tion of the ratio of the initial instance number and the point number (horizonal axis).
(Right): the processing time in seconds and convergence energy.
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Multiple Homography Fitting is evaluated on the AdelaideRMF homography dataset
[98] used in most recent publications (see Fig. 5.21 for examples). AdelaideRMF con-
sists of 19 image pairs of different resolutions with ground truth point correspon-
dences assigned to planes (homographies). To generate initial model instances the
technique proposed by Barath et al. [27] is applied: a single homography is estimated

for each correspondence using the point locations together with the related local
affine transformations. Table 5.15 reports the results of PEARL [140], FLOSS [169],
T-Linkage [84], ARJMC [167], RCMSA [170], J-Linkage [83], and Multi-X. To allow
comparison with the state-of-the-art, all methods, including Multi-X, are tuned sep-
arately for each test and only the same 6 image pairs are used as in [84].

Results using a fixed parameter setting are reported in Table 5.16 (results, except
that of Multi-X, copied from [177]). Multi-X achieves the lowest errors. Compared
to results in Table 5.15 for parameters hand-tuned for each problem, the errors are
significantly higher, but automatic parameter setting is the only possibility in many
applications. Moreover, per-image-tuning leads to overfitting.

FIGURE 5.21: AdelaideRMF (top) and Multi-H (bot.) examples. Color indicates the
plane Multi-X assigned a point to.

Two-view Motion Segmentation is evaluated on the AdelaideRMF motion dataset
consisting of 21 image pairs of different sizes and the ground truth — correspon-
dences assigned to their motion clusters.

Fig. 5.22 presents example image pairs from the AdelaideRMF motion datasets
partitioned by Multi-X. Different motion clusters are denoted by color. Table 5.17
shows comparison with state-of-the-art methods when all methods are tuned sep-
arately for each test case. Results are the average and minimum misclassification
errors (in percentage) of ten runs. All results except that of Multi-X are copied
from [179]. For Table 5.18, all methods use fixed parameters. For both test types,
Multi-X achieved higher accuracy than the other methods.
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= o o2 = 28
= B2 %9 % & 3 » I
s £ S 5 & § & 3
* =2 =~ < &~ N b=
1) 4 402 416 402 648 590 5.07 3.75
(2) 6 18.18 18.18 18.17 21.49 1795 18.33 4.46
3) 2 549 591 5.06 591 717 925 0.00
(4) 3 539 539 373 881 581 373 0.00
5) 2 158 1.8 026 1.85 211 0.27 0.00
6) 2 080 080 040 0.80 0.80 0.84 0.00
Avg. 591 6.05 530 756 662 625 1.37
Med. 471 4.78 3.87 620 586 4.40 0.00

TABLE 5.15: Misclassification error (%) for the two-view plane segmentation on
AdelaideRMF test pairs: (1) johnsonna, (2) johnsonnb, (3) ladysymon, (4) neem, (5)
oldclassicswing, (6) sene.

FIGURE 5.22: AdelaideRMF (top) and Hopkins (bot.) examples. Color indicates the
motion Multi-X assigned a point to.
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T-Lnkg RCMSA RPA Multi-H Multi-X
[84] [170]  [177]  [27]

Avg. | 4468 2317 1571 1435 9.72
Med. | 4449 2453 1589  9.56 2.49

TABLE 5.16: Misclassification errors (%, average and median) for two-view plane seg-
mentation on all the 19 pairs from AdelaideRMEF test pairs using fixed parameters.

KF [184] RCG[185]  T-Lnkg[84] AKSWH[186] MSH [179] Multi-X
Avg. Min. | Avg. Min. | Avg. Min. | Avg. Min. | Avg. Min. | Avg. Min.
(1) || 842 4231343 952|563 246 | 472 211 | 380 211 | 345 141
(2) || 1253 281 | 1335 1092 | 562 482 | 723 402 | 321 161 | 227 0.40
(3) || 1483 413 | 1260 8.07 | 496 132 | 545 142 | 269 0.83 | 145 041

(4) | 1378 510 | 994 396 | 732 354 | 7.01 518 | 372 122 | 0.61 0.30
(5) || 16.87 1455 | 26.51 19.54 | 442 4.00 | 9.04 843 | 6.63 455 | 524 1.80
(6) || 16.06 14.29 | 16.87 1436 | 193 1.16 | 8.54 499 | 1.54 1.16 | 0.62 0.00
(7) || 33.43 2130 | 26.39 2043 | 1.06 0.86 | 7.39 341 | 1.74 043 | 532 0.00
(8) || 31.07 2294 | 3795 20.80 | 3.11 3.00 | 1495 13.15 | 428 357 | 2.63 1.52

TABLE 5.17: Misclassification errors (%) for two-view motion segmentation on the Ade-

laideRMF dataset. All the methods were tuned separately for each video by the authors.

Tested image pairs: (1) cubechips, (2) cubetoy, (3) breadcube, (4) gamebiscuit, (5)
breadtoycar, (6) biscuitbookbox, (7) breadcubechips, (8) cubebreadtoychips.

RPA RCMSA T-Lnkg AKSWH Multi-X
[177]  [170] [84] [186]

Avg. | 562 971 43.83 12.59 2.97
Med. || 458 848 39.42 1157 0.00

TABLE 5.18: Misclassification errors (%, average and median) for two-view motion seg-
mentation on all the 21 pairs from the AdelaideRMF dataset using fixed parameters.

Simultaneous Plane and Cylinder Fitting is evaluated on LIDAR point cloud data
(see Fig. 5.23). The annotated database consists of traffic signs, balusters and the
neighboring point clouds truncated by a 3-meter-radius cylinder parallel to the ver-
tical axis. Points were manually assigned to signs (planes) and balusters (cylinders).

Multi-X is compared with the same methods as in the line and circle fitting sec-
tion. PEARL and Multi-X fit cylinders and planes simultaneously while T-Linkage
and RPA sequentially. Table 5.19 reports that Multi-X is the most accurate in all test
cases except one.

Video Motion Segmentation is evaluated on 51 videos of the Hopkins dataset [187].
Motion segmentation in video sequences is the retrieval of sets of points undergoing
rigid motions contained in a dynamic scene captured by a moving camera. It can be
seen as a subspace segmentation under the assumption of affine cameras. For affine
cameras, all feature trajectories associated with a single moving object lie in a 4D
linear subspace in R2/, where f is the number of frames [187].

Table 5.20 shows that the proposed method outperforms the state-of-the-art: SSC
[188], T-Linkage [84], RPA [177], Grdy-RansaCov [14], ILP-RansaCov [14], and J-
Linkage [83]. Results, except for Multi-X, are copied from [14]. Fig. 5.22 shows two
frames of the tested videos.
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(@) (b)

FIGURE 5.23: Results of simultaneous plane and cylinder fitting to LIDAR point cloud

in two scenes. Segmented scenes visualized from different viewpoints. There is only

one cylinder on the two scenes: the pole of the traffic sign on the top. Color indicates
the instance Multi-X assigned a point to.

PEARL [13] T-Lnkg[84] RPA[177] Multi-X
) 10.63 57.46 16.83 8.89
) 10.88 41.79 53.39 4.72
3) 37.34 52.97 61.64 2.84
4) 38.13 38.91 41.41 19.38
(5) 17.20 51.83 53.34 16.83
(6) 17.35 61.77 51.21 21.72
7) 6.12 12.49 80.45 5.72

TABLE 5.19: Misclassification error (%) of simultaneous plane and cylinder fitting to
LIDAR data. See Fig. 5.23 for examples.

H @ 6 @ 0O
Avg. | 0.06 076 395 213 1.08

SSC[188] Med. | 0.00 0.00 0.00 213 0.00

Avg. | 131 048 647 532 247
TLnkg[84] | \red | 000 019 238 532 0.00
RPA [177] Avg. | 014 019 441 911 142

Med. | 0.00 0.00 244 9.11 0.00
Avg. | 748 28.65 875 14.89 1091
Med. | 0.00 153 020 14.89 0.00
Avg. | 054 035 240 213 098

Grdy-RC [14]

ILP-RC [14] Med. | 0.00 019 130 213 0.00

Avg. [ 175 158 532 691 270
J-Lnkg [83] Med. | 0.00 034 130 691  0.00
Multi-X Avg. [ 0.05 009 032 1.06 0.16

Med. | 0.00 0.00 0.00 1.06 0.00

TABLE 5.20: Misclassification errors (%, average and median) for multi-motion detec-

tion on 51 videos of Hopkins dataset: (1) Traffic2 — 2 motions, 31 videos, (2) Traffic3

— 3 motions, 7 videos, (3) Others2 — 2 motions, 11 videos, (4) Others3 — 3 motions, 2
videos, (5) A11 — 51 videos.
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@) (2) 3) 4) )

#/M T |M T|M T|M T|M T
10001 04[01 03]01 03[00 02|01 04
500 | 20 140 |32 84|21 84|08 70|38 159
1000 | 51 1028 | - - | - - | - - |75 1209

TABLE 5.21: Processing times (sec) of Multi-X (M) and T-Linkage (T) for the problem of
fitting (1) lines and circles, (2) homographies, (3) two-view motions, (4) video motions,
and (5) planes and cylinders. The number of data points is shown in the first column.

Processing Time. Multi-X is orders of magnitude faster than currently available
Matlab implementations of J-Linkage, T-Linkage and RPA. Attacking the fitting prob-
lem with a technique similar to PEARL and SA-RCM, it is significantly faster since
it benefits from high reduction of the number of instances in the Median-Shift step
(see Table 5.21).

5.6.5 Summary

A novel multi-class multi-instance model fitting method has been proposed. It ex-
tends an energy minimization approach with a new move in the label space: re-
placing a set of labels corresponding to model instances by the mode of the den-
sity in the model parameter domain. Most of its key parameters are set adaptively
making it applicable as a black box on a range of problems. Multi-X outperforms
the state-of-the-art in multiple homography, rigid motion, simultaneous plane and
cylinder fitting; motion segmentation; and 2D edge interpretation (circle and line
titting). Multi-X runs in time approximately linear in the number of data points, it
is an order of magnitude faster than available implementations of commonly used
methods.
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Conclusion

During the last few decades, the correspondence problem between images taken
from significantly different viewpoints have been approached successfully by con-
sidering the warp between image regions. This warp can be locally approximated
as an affine transformation and obtained by state-of-the-art affine covariant feature
detectors. As a consequence, additional information about the underlying scene
geometry, i.e. the rotation, scales along the axes and the shear, become available.
However, with a few exceptions, the information which these local affine transfor-
mations encode is ignored in most of the geometric model estimation problems. In
general, solely the centers of the corresponding regions are exploited for the estima-
tion. Therefore, one of the main contributions of this thesis is the deepening of the
knowledge about the application of affine correspondences in projective geometry.

Even though surface normal estimation from affine correspondences is consid-
ered to be an already solved problem, we showed that an optimal method, in the
least squares sense, exists and it is solvable algebraically. We also proposed an ex-
tension for the multi-view case which makes the approach applicable in structure-
from-motion pipelines. Combining the method with the well-known Patch-based
Multi-view Stereo algorithm [133], we got significant improvement in the accuracy
of the reconstructed dense point clouds.

Investigating homography estimation, we advanced the state-of-the-art minimal
solver which exploits two affine correspondences to estimate a homography. The
proposed method assume a rigid scene, thus having a fundamental matrix interpret-
ing the camera motion, and provides a homography for each affinity independently.
As a theoretical consequence, there is a one-to-one relationship between homographies
and local affine transformations, therefore, they are equivalent for known funda-
mental matrix. Most of the feature detectors available in the field, provides more
information about the underlying affine correspondence than just the point coordi-
nates. Thus we generalized the estimation problem to describe the relationship of
each affine component, i.e. scales, rotation and shear, and the homography, indepen-
dently. The proposed method is able to make estimates from two partially known
affine correspondences, if the rotation, a scale and the point coordinates in the two
images are known.

We then showed the direct relationship of affine correspondences and epipolar
geometry which was unknown to the best of our knowledge. The approach consid-
ers the mapping of the epipolar lines and thus establishes constraints on the epipo-
lar geometry estimation directly. Exploiting the proposed relationship, we proposed
methods (i) to make a measured local affinity consistent with the epipolar geometry,
(ii) to estimate the essential matrix and (iii) for solving the semi-calibrated case, i.e.
obtaining the fundamental matrix and the common focal length.

The second major part of the thesis investigates robust single- and multi-model
fitting which is a fundamental component of computer vision pipelines. Mentioning
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just only one example, Random Sample Consensus (RANSAC) is used dominantly
for two-view geometry estimation and it is a part of some of its most successful
applications like 3D reconstruction, image matching and retrieval.

The first algorithm we proposed aims to remove the outliers, i.e. invalid point
matches, from a set of feature correspondences without considering an underly-
ing model. As it is demonstrated, the proposed approach is applicable to non-rigid
scenes and for rigid ones, combining it with model estimators makes it superior to
the traditional approaches in terms of outlier rejection rate. The method is applicable
in real time for most of the problems.

Then we advanced locally optimized RANSAC (LO-RANSAC) by replacing its
local optimization step with energy minimization. It runs iteratively the graph cut
algorithm in the local optimization (LO) step which is applied after a so-far-the-best
model is found. The proposed LO step is conceptually simple, easy to implement,
globally optimal and efficient. We demonstrated experimentally that GC-RANSAC
outperforms LO-RANSAC and its state-of-the-art variants in terms of both accuracy
and the required number of iterations for line, homography and fundamental matrix
estimation on standard public datasets.

The final part of the thesis aims to solve multi-model estimation, i.e. the problem
of interpreting the input data as a mixture of noisy observations originating from a
single or multiple model classes. First, we approached the multi-homography fitting
problem in two views, and proposed a method which is superior to the state-of-the-
art in terms of accuracy on publicly available datasets. Then a more general case is
considered: multi-class multi-instance fitting. The multiple instance multiple class case
considers fitting of instances that are not necessarily of the same class. This general-
ization has received much less attention than the single-class case. To the best of our
knowledge, the last significant contribution was that of Stricker and Leonardis [18].
The proposed Multi-X method finds multiple instances of multiple model classes
drawing on progress in energy minimization extended with a new move in the label
space: replacement of a set of labels with the corresponding mode in the model pa-
rameter domain. As it is demonstrated, this new move makes it outperforming the
state-of-the-art single-class algorithms for various problems.
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Appendix A

Proof of the Linear Affine
Constraints

It is trivial that an affine transformation A transforms the direction of the corre-
sponding epipolar lines to each other as all affine transformations correctly modify
the lines going through the corresponding point locations [u  v] and [« v']. There-
fore, Av || v/, where v and v’ are the directions of the epipolar lines on the first and
second images.

As it is well-known in computer graphics [99], line normals are transformed as
A~Tn = Bn’, where n = (FTp’);.5 and n’ = (Fp);.2 are the normals of the epipolar
lines (8 # 0). Lower index (1 : 2) denotes the first two elements of a vector. We
prove here that

A Tn=—n' (A1)
Suppose that corresponding point pair p = [u v 1Tand p’ = [/ v 1] are
given. Letn = [n, n,|T and n’ = [0/, 7/]T be the normal directions of epipolar
lines
L=Fp' = by L, (A2)
and
l/1 =Fp = [ ll,a /1,b ll,c]Tv (A3)

respectively. It is trivial that A~Tn = n’ due to Av || v/, where 3 is a scale factor.
First, it is shown how affine transformation A transforms the length of n if it is a
unit vector. To calculate this scale factor 3, it is required to introduce a new point as
close to p as possible determining epipolar lines on both images and 3 as the ratio

of distances from these new lines. Let us introduce pointq = p + 9 [nT 0} T, where
§ is a small scalar value. Point q determines an epipolar line ly = [l , 15, 1 ]" on
the second image as

T
équzF(p—i—é[nT O] >:[31 sy s3]",

where

s1=11 4 + 0 1114 + 6 fran,
So = l/l,b + 5f21nu + 6f22n?}7
53 =11 o + 0 3170 + 0 f32m0.

Then scale 3 is given by the distance d’ between line I}, and point p’. The setup is
visualized in Fig. 4.1(b). The calculation of distance d’ is given by the well-known
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formula as follows:
_|s1u’ + sov" + s3]

\/s% + s%

It is known that point p’ lies on 1}, which can be written as I} ,u’ + 1 ;o' + 1} . = 0.
This fact reduces Eq. A.4 to

d/

(A.4)

. |§1u' + §202 + §3’

d Ab5
NEE: a2
$1 = dfu1ny + 6 frany,
So = d farny, + 6 faany,

83 = 0 f311y + 0 f32my.

To determine f3, the introduced point q has to be moved infinitesimally close to the
location of p. In other words, § — 0. S is the ratio of the length of vector (p — q) and
the distance between point p’ and line I'y. The latter is §, while the former has just
calculated in Eq. A.5. Therefore the square of 3 is written as

N s1 + 53
52211111—2:11111 - 1272 5 (A.6)
5—0d? 50 |S1u + S2v" + S5
After elementary modifications, the final formula for scale 3 is given as
Ualt,a Tl bl e
p = Siwtsav+ss] (A7)

Si = fitny + fione, i€ {1,2,3}.

The epipolar line corresponding to point p is parameterized as [/, Uy le] =
Flu v 1]T. Therefore, the normal of thelineisasn’ = [l , lll,b]T =(F[u v 1] )a9).
Similarly, n = (FT [v/ o/ I}T)(m). The numerator in Eq. A.7 can be rewritten as

n| = ,/I2 +12, while the denominator is as follows:
l,a 1,b

siu’ + 590" + 53 = ny(fuu + forv' + fa1) +

ny(frow' + fagv' + faz) = nZ 4+ nZ = |n|?.

Thus

1
L

P Tnl
The length of normal n is one, thus 8 = 1, and Eq. 4.2.2 is modified as A Tn=+4n'
Since the direction of the epipolar lines on the two images must be the opposite of

each other, the positive solution can be omitted. The final formula is as follows:
A~ Tn=-n
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Appendix B

Surface Normals and General
Camera Model

Given the projections p; = [z1  yi1]and p2 = [z2  y2] ofa3Dsurfacepoint[X Y Z 1T
and the local affine transformation A mapping the infinitesimally neighborhoods
from the first to the second images and the intrinsic parameters of both cameras K;
and K. The goal is to show how the related surface normal n can be estimated
(see Figure B.1). The coordinates of a projection is calculated using the projections

n

FIGURE B.1: 3D patch perspectively projected to stereo images.

functions II, and II, as follows:
r=1,(X,Y,2), y=1,(X,Y,2).
The surface point [X Y Z]T is written in parametric form
X = X(u,v), Y =Y (u,v), Z = Z(u,v).

As it is well-known in differential geometry [189], the tangent vectors of the plane
are written by the partial derivatives of the spatial coordinates, while the surface
normal is given as the cross product of the tangent vectors: n = s,, x s,, where

s, = | OX(wv) OY(uv) 0Z(uw) }, 8, = { OX(uw) OY(up) O0Z(uw) ]

ou ou ou ov ov ov

Point[ X Y Z ]T, and tangent vectors s, and s, determine the tangent plane which
approximates the surface locally. Assuming a continuous surface, its points close to
[X Y Z]" are approximated by the first order Taylor-series:

[ T+ Az } [ 1, (X,Y, Z) } 3H;c(§(,Y,Z) 8Hw(§<,y,z) [ Ay }
y+Ay | 7| (X,Y,Z) 6Hy(52sz) 6Hy<§i,Y7Z) Av |
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Let us see that the partial derivatives of the projection functions give the affine trans-
formation between 3D and 2D surface patches as follows:

A, (X,Y,Z) Ol (X,Y,Z)

[Ax]%A[Au] A:[ X, X
J oMy (X,Y,Z) 0l (X,Y,Z)

ou ov

The partial derivatives can be reformulated using the chain rule. For instance,

OM(XY,Z) _O,(X.Y.Z) X  O(X.Y.Z)Y

ou ou ou ov ou
ol (X,Y,Z) Z B T
Tz au ViLSe

where VII, is the gradient vector of the projection function w.r.t. spatial coordinates
X, Y and Z of the surface patch. Similarly,

oIy __ T o, T o, _ T
= VIL,s, e = VHysu T = VHysl,.

Therefore, the affine matrix is written as

VIIE
A:[Vﬂf][su sv}.

Considering the case when two images are given, the affine transformation between
the image patches is obtained by multiplying the inverse of affine transformation A,
(between the patch of the 1st image and the 3D one), and the affine transformation
A (between 3D patch and that in the 2nd image). Formally, it can be written as

[ Axo Ayo ]T = Ag_Al_1 [ Az Ay ]T.

A,AT! is the cumulated affine transformation between the images. The inverse of
the affine matrix A can be written as

1 1 s,
det (A)

—IIts,
—1I7s, Hgysv ] ’

where det(A) = Hisuﬂgsv — Hgsvﬂgsu. Exploiting the fact that s,s} — s,s! = [n],

the transformation AgAf1 can be written as

T T
Al_lAQ — 1 HC2CT [n]X HzlJ H%?T [n]X H£2E
LT (o], T} | I [n], 1T, 10 [n], 1T

Note that the scale of the normal is arbitrary since both the determinant and the
matrix elements are multiplied by [n],.. The expression a' [n], b is also called the
scalar triple product. Remark that a' [n], b equals to n’(b x a). Therefore, the final
equation of the affine transformation is written as

T T
[ ail a1 } _ AflAg _ 1 [ nTwl n wy ] ’ (B.1)

a1 a2 nTws | nTws nTwy

where w; = VI x VIIZ, wy = VIIZ x VII}, wg = VII x VIL, wy = VII? x VII,,
and ws = VII} x VII}. Equation B.1 shows the relationship of surface normals and
local affinities for arbitrary camera model.
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Appendix C

Affine Parameters from a
Homography

Affine transformation A comes from the first-order Taylor serie of homography H,
where H is a plane-plane perspective transformation between stereo images. The
correspondence between the coordinates in the first (x; and y;) and second (z2 and
y2) images is

hi [z y 1] vy — hifz; i 1]"
7 hlfzr w17

T =
hlfzr i 1)

where 3 x 3 homography matrix H is written as

hi hi1 hiz s
H=| hl | =| hat ho hos |.

h! hs1 hs2  hss

)

The affine parameters equal to the partial derivatives of the homography. For exam-
ple, the top left element a1, of the affine transformation is as follows:

aj] = % _ hllhg [z1 w1 1]T — h31h¥ 1 w1 1]T _ hi1 — h31xo

o (hg [z1 w1 1]T>2 s

Y

where s = hi[z; y 1]7 is called the projective depth of the point. The other
components are obtained in the same way:

Oz1  hi — ha1@o Ozg  hig — h3awo

a1 =4 - =——"—, Q2= =
oy s ’ oy s ’

_Oya  ho1 — ha1y2 _ Oy2  hoa — h3oyo
a1 =5 - =—— 5 @2=>—=——"—"".
0x1 s 0y1 s
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Appendix D

Is LSQ Minimization of the Affine
Parameters Correct

It is shown in this section that the minimization of the Frobenious-norm has both
algebraic and geometric interpretations for local affine transformations.

Matrix A without the translation is a 2 x 2 linear transformation, therefore, it is
determined by two points. (The projection of the origin remains the same.) Let us

choose points [I 0]" and [0 1]". Then the minimizing formula for the former one

is as follows:
ol 2L, s ]

2

/ / /

all — all alg — a12 1 all — all
/ / - /

(a11 — aly)? + (a1 — dby)?

2 2

2

N N

The minimization for the second point is fairly similar as

Sl Rl | I [t
1 1 agso — CL/22
By combining both Egs. D.1, D.2 the Frobenious-norm of difference matrix A — A’
is obtained. As a consequence, minimizing the Frobenious-norm of the difference matrix

is equivalent to the optimization of its effect on points. Therefore, the squared differences
of the parameters have both algebraic and geometric interpretations.

2
~ 0. (D.1)

2
= (a12 — a}y)* + (az2 —ay)? =0.  (D.2)

2 ‘
2

2
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Summary

In English

In this thesis, we focused on two major fields of computer vision, that are geometric
model estimation from affine correspondences and robust (multi-)model estimation.
Some of the papers which inspired this work were published at the most presti-
gious computer vision forums, such as, Conference on Computer Vision and Pattern
Recognition (CVPR) or European Conference on Computer Vision (ECCV).

Solving problems in geometric model estimation, we proposed methods for es-
timating surface normals from multiple views; homographies from a single affine
correspondence; fundamental and essential matrices from three and two correspon-
dences; and solved the semi-calibrated case as well, i.e. when the intrinsic camera
parameters are given but a common focal length. Moreover, we showed what is
the direct relationship between affine correspondences and epipolar geometry. The
proposed methods were proven to be accurate both in our synthesized test envi-
ronment and on publicly available real world data and they are compared with the
state-of-the-art algorithms of the field.

Approaching robust model estimation, we proposed a method for rejecting out-
liers from a set of point correspondences without assuming an underlying geomet-
ric model which interprets the scene; a locally optimized RANSAC was proposed
outperforming the state-of-the-art on various robust model fitting problems. The
method is built on the assumption that close points are more likely belong to the
same model and, thus, it is beneficial to take the spatial coherence into considera-
tion. Also, a method is proposed for fitting multiple homographies in two views.
Generalizing this problem, we proposed an approach for estimating multiple geo-
metric models which are not necessarily of the same model class. The performance
of these methods were also evaluated both in our synthesized test environment and
on publicly available real world data.

In Hungarian

Ezen disszertacioban a szamitégépes latas két teriiletére fokuszaltunk, amik a ge-
ometriai modell becslés affin megfeleltetések felhasznaldséaval, illetve a robusztus
(multi-)modell illesztés. Néhany, e munkat ihletd cikk a szamoégépes latas legnagy-
obb presztizsti férumain jelent meg, mint példdul a Conference on Computer Vision
and Pattern Recognition (CVPR), vagy a European Conference on Computer Vision
(ECCV).

A geometriai modell becslés szdmos problémdjat oldottuk meg affin megfelel-
tetések felhasznaldsdval. Ezek a problémaék: feliileti normélisok becslése tébb nézet
felhaszndldsaval, homogréfia becslése egyetlen megfeleltetésbdl; fundamentalis és
esszencidlis métrixok becslése harom, illetve két megfeleltetésbodl; és megoldottuk
az agy nevezett félig-kalibralt esetet is affin jellemz6pontokkal. A félig-kalibralt eset
alapfeltevése, hogy a kamerdk bels6 paraméterei egy kozos fokusztav kivételével
mind ismertek. Ezen feliil megmutattuk, hogy mi a kozvetlen kapcsolat affin megfelel-
tetések és az epipolaris geometria kozott. A javasolt algoritmusokat mind szin-
tetikus tesztkornyezetben, mind publikusan elérheté valés adatbazisokon teszteltiik
és hasonlitottuk Ossze a state-of-the-arttal.
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A robusztus modell illesztés teriiletén javasoltunk egy médszer outlierek sz{irésére
pont-megfeleltetések egy halmazdbdl. A javasolt médszer nem feltételezi egy, a szin-
teret magyardz6 geometriai modell 1étezését. Javasoltunk egy 1j lokdlisan optimal-
izalt RANSAC algoritmust is, mely arra a feltételezésre épit, hogy az egymashoz
kozel elhelyezked pontok nagy valészintiséggel tartoznak ugyanahhoz a modell-
hez. Tehat a pontok térbeli reldcidira épitve nagyobb pontossag és korabbi termina-
ci6 érhet? el. Javaslunk egy médszert multi-homografia illesztésre is két kép kozott,
majd ezt a modszert dltaldnositva eljutunk ahhoz a problémahoz, amikor ismeretlen
szdmu és tetszbleges tipusti modellt szeretnénk egyid6ben megtaldlni. Ezen médsz-
erek hatékonységat is kiértékeltiik mind szintetikus, mind publikusan elérhet6 valés
adatbazisokon.
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Estimation
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Il. Nyilatkozatok
1. A doktori értekezés szerzéjeként?

a) hozzajarulok, hogy a doktori fokozat megszerzését kovetGen a doktori értekezésem és a tézisek
nyilvdnossagra keriiljenek az ELTE Digitalis Intézményi Tuddstdrban. Felhatalmazom az Informatika
Doktori Iskola hivatalanak lgyintéz6jét, Kulcsar Adinat, hogy az értekezést és a téziseket feltdltse az
ELTE Digitdlis Intézményi Tudastarba, és ennek soran kitoltse a feltoltéshez sziikséges nyilatkozatokat.

b) kérem, hogy a mellékelt kérelemben részletezett szabadalmi, illetéleg oltalmi bejelentés
kozzétételéig a doktori értekezést ne bocsdssak nyilvanossagra az Egyetemi Konyvtarban és az ELTE
Digitélis Intézményi Tudastarban;*

c) kérem, hogy a nemzetbiztonsagi okbdl mingsitett adatot tartalmazéd doktori értekezést a
mindsités (ddtum)-ig tartd id6tartama alatt ne bocsassak nyilvanossagra az Egyetemi Kényvtarban és
az ELTE Digitalis Intézményi Tuddstarban;®

d) kérem, hogy a m( kiadasara vonatkozé mellékelt kiadd szerz6désre tekintettel a doktori
értekezést a konyv megjelenéséig ne bocsassak nyilvanossdgra az Egyetemi Konyvtarban, és az ELTE
Digitdlis Intézményi Tudastarban csak a konyv bibliografiai adatait tegyék kozzé. Ha a konyv a
fokozatszerzést kovetdn egy évig nem jelenik meg, hozzdjarulok, hogy a doktori értekezésem és a
tézisek nyilvanossadgra keriiljienek az Egyetemi Konyvtarban és az ELTE Digitalis Intézményi
Tudastarban.®
2. A doktori értekezés szerzGjeként kijelentem, hogy

a) az ELTE Digitalis Intézményi Tuddastarba feltoltend6 doktori értekezés és a tézisek sajat eredeti,
0nalld szellemi munkdam és legjobb tudomdsom szerint nem sértem vele senki szerzéi jogait;

b) a doktori értekezés és a tézisek nyomtatott valtozatai és az elektronikus adathordozén benyujtott
tartalmak (szoveg és dbrak) mindenben megegyeznek.

3. A doktori értekezés szerz6jeként hozzadjarulok a doktori értekezés és a tézisek szovegének
plagiumkeres6 adatbazisba helyezéséhez és plagiumellendrz6 vizsgdlatok lefuttatasahoz.
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a doktori értekezés szerzGjének aldirasa

! Beiktatta az Egyetemi Doktori Szabalyzat mddositasardl szold CXXXIX/2014. (V1. 30.) Szen. sz. hatarozat.
Hatalyos: 2014. V11.1. napjatol.

2 A kari hivatal Ugyintézdje tolti ki.

3 A megfelel szoveg alahtizando.

4 A doktori értekezés benyujtasaval egyidejiileg be kell adni a tudomanyagi doktori tanacshoz a szabadalmi,
illetéleg oltalmi bejelentést tantsitod okiratot és a nyilvanossagra hozatal elhalasztasa iranti kérelmet.

5> A doktori értekezés benyujtasaval egyidejlileg be kell nytjtani a mindsitett adatra vonatkozo6 kdzokiratot.

& A doktori értekezés benyujtasaval egyidejlileg be kell nytjtani a mii kiadasarol szol6 kiadoi szerzédést.



